
Windows Sockets 2
 Service Provider

Interface

A Service Provider Interface for Transparent Network

Programming under Microsoft Windows

Revision 0.4

December 9, 1994

Winsock 2

Subject to Change Without Notice

ii

Disclaimer

Microsoft, Intel, and JSB disclaim all warranties and liability for the use of this document

and the information contained herein, and assume no responsibility for any errors which

may appear in this document. Microsoft, Intel, and JSB make no warranty or license

regarding the relationship of this document and the information contained herein to the

intellectual property rights of any party. Microsoft, Intel, and JSB make no commitment

to update the information contained herein.

iii

Winsock 2.0 Service Provider Interface

TABLE OF CONTENTS

TABLE OF CONTENTS... iii

1. INTRODUCTION ...4

1.1 Winsock Specification is a WOSA Component ..4

1.1.1 Winsock 2 DLLs ..5

1.2 Microsoft Windows and Windows-specific extensions...5

1.3 Naming Conventions ...5

2. OVERVIEW ..7

2.1 Configuration of Winsock Service Providers ..7

2.1.1 Registry Layout for Windows NT and Windows 95 ..7

2.1.1.1 Providers ...7

2.1.1.2 Provider-specific Keys ..7

2.1.2 WINSOCK2.INI Layout for Windows 3.1...9

2.1.2.1 Providers ...9

2.1.2.2 Provider-specific Sections ([Provider-<Provider Key>])....................10

2.2. Service Providers Interface Model ...12

2.3 Initialization of Winsock Service Providers ..12

2.4 Functionality Implemented Within the Winsock DLL ..12

2.5 Functionality Implemented by Service Providers..13

2.6 Differences and Similarities Between Winsock API and SPI..13

2.7 Differences Between 32-bit and 16-bit Winsock SPI ..13

2.8 Sockets...14

2.8.1 Out-of-band data ..14

2.8.2 Socket Options ...14

2.9 Quality of Service (QOS) ..16

2.9.1 Overall Approach ...16

2.9.2 The Flow Spec Structure ..16

3. SERVICE PROVIDER INTERFACE REFERENCE..18

3.1 Socket Routines ...18

3.1.1 WSPBind() ...19

3.1.2 WSPCloseSocket() ...21

3.1.3 WSPGetPeerName()...22

3.1.4 WSPGetSockName() ..23

3.1.5 WSPGetSockOpt() ...24

3.1.6 WSPIoctlSocket() ...28

3.1.7 WSPListen() ...30

3.1.8 WSPSelect() ...32

3.1.9 WSPSetSockOpt() ..34

3.1.10 WSPShutdown() ...38

3.1.11 WSPAccept()..40

3.1.12 WSPAsyncSelect32() ...43

3.1.13 WSPCallbackSelect16() ...49

3.1.14 WSPCancelBlockingCall32() ...55

3.1.15 WSPCleanup()..57

3.1.16 WSPConnect()..59

3.1.17 WSPEnumNetworkEvents()...63

3.1.18 WSPEventSelect() ..65

3.1.19 WSPIsBlocking32()..70

3.1.20 WSPRecv() ...71

4

3.1.21 WSPRecvFrom() ..74

3.1.22 WSPSend() ...77

3.1.23 WSPSendTo()...80

3.1.24 WSPSetBlockingHook32()...84

3.1.25 WSPSocket() ..86

3.1.26 WSPStartup()..88

3.1.27 WSPUnhookBlockingHook32()...91

4. Upcalls ...92

4.1 WPUCreateSocketHandle() ...93

4.2 WPUCloseSocketHandle() ..94

4.3 WPUQuerySocketHandleContext()...95

4.4 WPUSetSocketHandleContext()..96

4.5 WPUQueueUserAPC32() ..97

4.6 WPUGetCurrentThreadId32() ...98

5. Installation APIs...99

5.1 WPUInstallProvider() ..99

5.2 WPUDeinstallProvider()..100

Appendix A. Error Codes and Header Files...101

A.1 Error Codes...101

A.2 Winsock SPI Header File - ws2spi.h ..103

Appendix B. Notes for Winsock Service Providers...118

B.1 Introduction...118

B.2 Winsock SPI Run Time Components..118

B.3 Error Codes ...118

Appendix C. Outstanding Issues ..119

1. INTRODUCTION

This document defines the Service Provider Interface (SPI) of Windows Socket (Winsock) 2.0. The

Winsock SPI specifies the external interface of a service provider to be implemented by vendors of network

protocol stacks. Installing a service provider allows Windows applications written to the Winsock 2 API

interface to access the service provider’s network protocol stacks. This will permit one or more applications

to have access to multiple protocol stacks simultaneously.

1.1 Winsock Specification is a WOSA Component

The Winsock network transport services are provided as a WOSA (Windows Open Services Architecture)

component. They consist of both an application programming interface (API) used by applications and a

service provider interface (SPI) implemented by service providers. This document is designed to be a stand-

alone reference for Winsock service provider developers. Readers intending to write network applications

should refer to the document "Windows Socket Interface, revision 2.0" which describes Winsock 2 API.

Windows Open Service Architecture (WOSA) provides a single-level interface for connecting front-end

applications with back-end services. The front-end application and back-end service need not speak each

other's language in order to communicate as long as they both know how to talk to the WOSA interface. As

a result, WOSA allows application developers and vendors of back-end services to mix and match

applications and services to build solutions that shield programmers and users from the underlying

complexity of the system. WOSA defines an abstraction layer to heterogeneous computing resources

through the WOSA set of APIs. Because this set of APIs is extensible, new services and their corresponding

APIs can be added as needed. Applications written to the WOSA APIs have access not only to all the

various computing environments supported today, but also to all additional environments as they become

available. Moreover, applications don't have to be modified in any way to enjoy this support.

5

Each service recognized by WOSA also has a set of interfaces that service-provider vendors use to take

advantage of the seamless interoperability that WOSA provides. In order to provide transparent access for

applications, each implementation of a particular WOSA service simply needs to support the functions

defined by its service-provider interface.

WOSA uses a Windows dynamic-link library (DLL) that allows software components to be linked at

runtime. In this way, applications are able to connect to services dynamically. An application needs to know

only the definition of the interface, not its implementation.

1.1.1 Winsock 2 DLLs

Winsock network services follow the WOSA model. This means that there exists a Winsock Application

Programming Interface (API), which is the application programmer’s access to network services, a Winsock

Service Provider Interface (SPI) which is implemented by network service provider vendors, and the

Winsock DLL. For 16 bit applications this DLL is referred to as WINSOCK2.DLL while 32 bit

applications use WSOCK32.DLL. Note that in Windows 3 environments, only Winsock2.DLL will be

available, while Windows 95 and Windows NT support both DLLs. Winsock 2’s WOSA compliant

architecture is illustrated below in Figure 1.

App App App App

Winsock 2 DLL

(Windows)

Transport

Service

Provider

Transport

Service

Provider

Transport

Service

Provider

Winsock 2 API

Winsock 2 SPI

Figure 1

1.2 Microsoft Windows and Windows-specific extensions

This SPI is intended to be usable within all implementations and versions of Microsoft Windows including

Windows NT, Windows 95, Windows 3.11, and Windows 3.1.

Winsock makes provisions for multithreaded Windows processes. In the non-preemptive Win16

environment, a task corresponds to a process with a single thread of execution. In the preemptive Win32

environment, a process contains one or more threads of execution.

1.3 Naming Conventions

6

The Winsock SPI uses the same naming conventions for functions, messages, and parameters as those used

by the Winsock API except that all the functions are prefixed by WSP, which stands for Winsock Service

Provider.

SPI functions applicable only to a particular platform end in an identifying suffix. For example,

WSPCallbackSelect16() is applicable only to 16-bit Windows, and WSPAsyncSelect32() is applicable

only to 32-bit Windows.

“Upcalls” (utility functions made available by the Winsock DLL for use by SPI DLLs and installation

programs) are prefixed by WPU, which stands for Winsock Provider Upcall.

7

2. OVERVIEW

2.1 Configuration of Winsock Service Providers

When a service provider is installed, some configuration information must be added to a configuration

database to give the Winsock DLL required information regarding the service provider. A service provider

vendor must arrange for this information to be updated as part of the service provider installation.

Under Windows NT and Windows 95, this configuration information is stored in the system registry. Under

Windows 3.1 and 3.11, this configuration information is stored in the WINSOCK2.INI file.

2.1.1 Registry Layout for Windows NT and Windows 95

All provider configuration information is stored under the following registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Winsock2

Throughout this document, all references to relative subkeys and values are assumed to exist under this

main Winsock2 registry key. For example, any reference to the “Providers” subkey is actually a reference to

the “HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Winsock2\Providers” key.

2.1.1.1 Providers

The “Providers” subkey contains one subkey for each installed service provider. The maximum length of

provider subkey names is 32 characters. These subkeys are created by any software that installs service

providers.

The “ProviderOrder” subkey contains zero or more values used to locate the active service providers. These

values also establish a priority ordering of service providers. The name of each value represents an active

service provider. For example:

\ProviderOrder
Microsoft TCP/IP = REG_SZ “”
novlwp = REG_SZ “”
TC&S = REG_SZ “”

2.1.1.2 Provider-specific Keys

Each Winsock service provider must have a unique subkey under the “Providers” subkey. It is the

responsibility of the service provider to create its provider-specific subkey at the time it is installed. It is

also the responsibility of the service provider to delete its provider-specific subkey at the time it is removed.

Only the service provider writes values in its provider-specific subkey. The Winsock DLL reads only the

following values in the provider-specific subkey. Other values in the subkey are permitted for internal use

by the service provider. This subkey consists, at a minimum, of the following:

\Provider\<Provider Name>
ProviderFilename = REG_SZ “<filename>“
ProviderDescription = REG_SZ “<Description of the provider>“
ProviderDomain = REG_DWORD <Address family>
ProviderAddrLength = REG_DWORD <length>
NumSockets = REG_DWORD <count> { PII model implied }
SocketType<index> = REG_DWORD <Socket Type>

8

AddressFamily<index> = REG_DWORD <Address Family>
Protocol<index> = REG_DWORD <Protocol>
MinimumAddressLength<index> = REG_DWORD <Minimum Address Length>
MaximumAddressLength<index> = REG_DWORD <Maximum Address Length>
ProtocolAttributes<index> = REG_DWORD <Protocol Attributes>
ProtocolDescription<index> = REG_SZ “<Description of the
protocol>“

For example:

\Provider\novlwp
ProviderFilename = REG_SZ "novlwp.WSP"
ProviderDescription = REG_SZ "Novell LAN WorkPlace for DOS"
 ProviderAddrLength = REG_DWORD 8
NumSockets = REG_DWORD 3
SocketType0 = REG_DWORD 1
AddressFamily0 = REG_DWORD 2
Protocol0 = REG_DWORD 2
MinimumAddressLength0 = REG_DWORD 16
MaximumAddressLength0 = REG_DWORD 16
ProtocolAttributes0 = REG_DWORD 0x00001066
ProtocolDescription0 = REG_SZ "Stream socket in INET domain"
SocketType1 = REG_DWORD 2
AddressFamily1 = REG_DWORD 2
Protocol1 = REG_DWORD 2
MinimumAddressLength1 = REG_DWORD 16
MaximumAddressLength1 = REG_DWORD 16
ProtocolAttributes1 = REG_DWORD 0x00001609
ProtocolDescription1 = REG_DSZ "Dgram socket in INET domain"
SocketType2 = REG_DWORD 3
AddressFamily2 = REG_DWORD 2
Protocol2 = REG_DWORD 2
MinimumAddressLength2 = REG_DWORD 16
MaximumAddressLength2 = REG_DWORD 16
ProtocolAttributes2 = REG_DWORD 0x00000109
ProtocolDescription2 = REG_SZ"Raw socket in INET domain"

The ProviderFilename value identifies the filename of the service provider DLL.

The ProviderDescription value is the descriptive text of this service provider.

. The ProviderAddrLength value is the (maximum) length of addresses (in bytes) used in the address

family specified in ProviderDomain. The length includes the two-byte address family and the size of

the address family specific address.

The NumSockets value indicates how many different types of sockets are supported, and how many

SocketType<index>, AddressFamily<index>, Protocol<index>, and

ProtocolDescription<index> values appear in the section.

The SocketType<index> value (one per socket type) identifies the type of this socket as defined in

"ws2spi.h".

The AddressFamily<index> value (one per socket type) identifies the address family of this socket as

defined in "ws2spi.h".

The Protocol<index> value (one per socket type) identifies the protocol of this socket as defined in

"ws2spi.h".

9

The MinimumAddressLength<index> value (one per socket type) specifies the minimum BYTE size

of a valid address for this protocol.

The MaximumAddressLength<index> value (one per socket type) specifies the maximum BYTE size

of a valid address for this protocol.

The ProtocolAttributes<index> value (one per socket type) identifies the behavioral

characteristics of the protocol. This value consists of any number of XP_xxx values ORed together. (The

XP_xxx values are defined in the Registration and Resolution API specification.)

The ProtocolDescription<index> value (one per socket type) is the descriptive text for this

protocol.

In the SocketType<index>, AddressFamily<index>, Protocol<index>, and

ProtocolDescription<index> values, <index> takes the values from 0 to one less than

<count> (as specified in NumSockets). These values are created by any software that installs the service

provider. Although all these values must be present, there is no requirement that they appear in numerical

order.

The service provider may include any other values/subkeys in its subkey which are necessary to fulfill the

responsibilities of the provider as specified in the Winsock Service Provider Interface Specification, or for

other private configuration purposes.

2.1.2 WINSOCK2.INI Layout for Windows 3.1

The WINSOCK2.INI file contains a wide variety of information, and two kinds of identifiers are used:

1. name-sequence numbers. These numbers simply provide a convenient way to index through a list

of similar entries in a WINSOCK2.INI file section. For example, the list of "ProviderKey" entries

in the [Providers] section uses the names ProviderKey0, ProviderKey1, ProviderKey2, ... as a set

of easily-indexed names for the entries. The scope of these name-sequence numbers is strictly

limited to the section in which they appear. These numbers are unrelated to anything outside the

section. They may be completely renumbered whenever the WINSOCK2.INI configuration

changes.

2. permanent string identifiers. These strings are permanent identifiers for entries. They typically

appear in several different WINSOCK2.INI file sections to identify a relationship between entries

in those two sections. For example, each provider-specific section ([Provider-<Provider key>])

includes the permanent string identifier called "provider key" of the provider in the section name.

This indicates that the entry corresponds to the service provider with the matching permanent

string identifier in the [Providers] section. The scope of these string identifiers includes the entire

WINSOCK2.INI and persists until such identifiers are explicitly changed. Some of these

identifiers can be retrieved through the Winsock SPI interface.

2.1.2.1 Providers

The “[Providers]” section of WINSOCK2.INI specifies the total number of the installed Winsock service

providers, and the provider key for each service provider. This information is used so that Winsock2.DLL

can identify and load each provider.

These entries in this section have the following format:

10

[Providers]
NumProviders=<count>
ProviderKey<index>="<Provider Key>"

For example:

[Providers]
NumProviders=2
ProviderKey0="novlwp"
ProviderKey1="FTP"

The NumProviders entry indicates how many service providers are installed, and how many

ProviderKey<index> entries appear in the section. <count> is set to 0 when the Winsock

implementation is initialized; the values are subsequently updated by any software that installs or removes

service providers.

Each ProviderKey<index> entry (one per provider) specifies an unique provider key with which the

service provider can identify itself. <index> takes the values from 0 to one less than <count> (as

specified in NumProviders). The maximum length of the provider key is 32 characters. These entries are

created by any software that installs service providers, and must be renumbered as providers are deleted.

Although all these entries must be present, there is no requirement that they appear in numerical order. This

provider key is also used to link parameters in other sections for provider-specific information.

2.1.2.2 Provider-specific Sections ([Provider-<Provider Key>])

For each Winsock service provider defined in the [Providers] section, there must be a [Provider-
<Provider Key>] section. The <Provider Key> value is the provider key defined for that service

provider in the corresponding ProviderKey<index>="<Provider Key>" entry in the [Providers]

section. For example, corresponding to an entry such as ProviderKey0="novlwp" there would be a

section named [Provider-novlwp].

It is the responsibility of the service provider to create its provider-specific section in WINSOCK2.INI at

the time it is installed. It is also the responsibility of the service provider to delete its provider-specific

section in WINSOCK2.INI at the time it is removed. Only the service provider writes entries in its provider-

specific section. Winsock2.DLL reads only the following entries in the provider-specific section. Other

entries in the section are permitted for internal use by the service provider. This section consists, at a

minimum, of the following:

[Provider-<Provider Key>]
ProviderFilename="<filename>"
ProviderDescription="<Description of the provider>"
 ProviderAddrLength=<length>
NumSockets=<count>
SocketType<index>=<Socket Type>
AddressFamily<index>=<Address Family>
Protocol<index>=<Protocol>
MinimumAddressLength<index>=<Minimum Address Length>
MaximumAddressLength<index>=<Maximum Address Length>
ProtocolAttributes<index>=<Protocol Attributes>
ProtocolDescription<index>="<Description of the protocol>"

For example:

[Provider-novlwp]
ProviderFilename="novlwp.WSP"

11

ProviderDescription="Novell LAN WorkPlace for DOS"
 ProviderAddrLength=8
NumSockets=3
SocketType0=1
AddressFamily0=2
Protocol0=2
MinimumAddressLength0 = 16
MaximumAddressLength0 = 16
ProtocolAttributes0 = 0x00001066
ProtocolDescription0="Stream socket in INET domain"
SocketType1=2
SocketDescription1="Dgram socket in INET domain"
SocketType2=3
MinimumAddressLength0 = 16
MaximumAddressLength0 = 16
ProtocolAttributes0 = 0x00001609
ProtocolDescription2="Raw socket in INET domain"

The ProviderFilename entry identifies the filename of the service provider DLL.

The ProviderDescription entry is the descriptive text of this service provider.

. The ProviderAddrLength entry is the (maximum) length of addresses (in bytes) used in the address

family specified in ProviderDomain. The length includes the two-byte address family and the size of

the address family specific address.

The NumSockets entry indicates how many different types of sockets are supported, and how many

SocketType<index>, AddressFamily<index>, Protocol<index>, and

ProtocolDescription<index> entries appear in the section.

The SocketType<index> entry (one per socket type) identifies the type of this socket as defined in

"ws2spi.h".

The AddressFamily<index> entry (one per socket type) identifies the address family of this socket as

defined in “ws2spi.h”.

The Protocol<index> entry (one per socket type) identifies the protocol of this socket as defined in

“ws2spi.h”.

The MinimumAddressLength<index> value (one per socket type) specifies the minimum BYTE size

of a valid address for this protocol.

The MaximumAddressLength<index> value (one per socket type) specifies the maximum BYTE size

of a valid address for this protocol.

The ProtocolAttributes<index> value (one per socket type) identifies the behavioral

characteristics of the protocol. This value consists of any number of XP_xxx values ORed together. (The

XP_xxx values are defined in the Registration and Resolution API specification.)

The ProtocolDescription<index> entry (one per socket type) is the descriptive text for this

protocol.

In the SocketType<index>, AddressFamily<index>, Protocol<index>, and

ProtocolDescription<index> entries, <index> takes the values from 0 to one less than

<count> (as specified in NumSockets). These entries are created by any software that installs the

12

service provider. Although all these entries must be present, there is no requirement that they appear in

numerical order.

The service provider may include any other entries in its section which are necessary to fulfill the

responsibilities of the provider as specified in the Winsock Service Provider Interface Specification, or for

other private configuration purposes.

2.2. Service Providers Interface Model

Winsock service providers are DLLs with EXPORTED procedure entry points for the functions defined by

the SPI. Service providers should have their file extension changed from ".DLL" to ".WSP". This

requirement is not strict. A service provider will still operate with the Winsock DLL with any file extension.

The SPI defines an entry point for each Winsock-specific function. These procedures are EXPORTED

procedures just as in any DLL. They must be exported by ordinal numbers, as defined in "ws2spi.h" for

each function. The Winsock DLL calls these Winsock specific entry points once the service provider is

loaded using the standard dynamic linkage mechanism for calling DLLs.

The entry points described above cover the instances in which the Winsock DLL invokes functions

provided by the service provider. The SPI also defines several circumstances in which the service provider

calls back into the Winsock DLL to inform the Winsock DLL of various occurrences.

2.3 Initialization of Winsock Service Providers

Over time, different versions may exist for the Winsock DLLs, applications, and service providers. New

versions may define new features, new fields to data structures and bit fields, etc. Version numbers

therefore indicate how to interpret various data structures.

To allow optimal mixing and matching of different versions of applications, versions of the Winsock DLL

itself, and versions of service providers by different vendors, the SPI provides a version negotiation

mechanism for the Winsock DLL and the service provider. This version negotiation is handled by

WSPStartup(). Basically, the Winsock DLL passes to the service provider the highest version numbers it is

compatible with. The service provider compares this with its own supported range of version numbers. If

these ranges overlap, the service provider returns a value within the overlapping portion of the range as the

result of the negotiation. Usually, this should be the highest possible value. If the ranges do not overlap, the

two parties are incompatible and the function returns an error.

2.4 Functionality Implemented Within the Winsock DLL

The major task that the Winsock DLL does is to serve as a sort of "traffic manager" between service

providers and applications. Consider several different service providers interacting with the same

application. Each Provider interacts strictly with the Winsock DLL. The Winsock DLL takes care of

merging streams of events from those service providers into a single stream directed at the application. It

hides the details of arbitration and synchronization over the data structures holding this single stream.

Service providers are unaware that any of this is happening. They do not need to be concerned about the

details of cooperating with one another or even the existence of other service providers. By abstracting the

service providers into a consistent DLL interface, the Winsock DLL can interact with a variety of providers

regardless of the underlying protocol’s implementation technology.

In addition to its major "traffic manager" service, the Winsock DLL provides a number of other services

such as socket descriptor management (in order to avoid conflicts and ambiguities between applications and

service providers and among service providers), parameter validation for Winsock API and Winsock SPI,

13

version negotiation between applications and the Winsock DLL, as well as between the Winsock DLL and

service providers. The Winsock DLL also realizes protocol enumeration, event objects, shared sockets, and

the pseudo blocking mechanism for Windows 3 environments.. Note that the differences between 16 and 32

bit versions of Windows with respect to blocking, preemption and shared address spaces dictates that the

mechanisms used to implement the 16 and 32 bit versions of Winsock 2 DLLs vary significantly as well.

This in turn leads to certain SPI functions that are applicable only to either 16 or 32 bit Windows

implementations.

2.5 Functionality Implemented by Service Providers

The Winsock DLL has no knowledge about how requests to service providers are realized; this is up to the

service provider implementation. Service providers implement the actual transport protocol which includes

such functions as . setting up connections, transferring data, exercising flow control and error control, etc.

The implementation of such functions may differ greatly from one provider to another. Service providers

hide the implementation-specific details of how network operations are accomplished.

To summarize: service providers implement the low-level network-specific protocols. The Winsock DLL

provides the medium-level traffic management that interconnects these transport protocols with

applications. Applications in turn provide the policy of how these traffic streams and network-specific

operations are used to accomplish the functions desired by the user.

2.6 Differences and Similarities Between Winsock API and SPI

The Winsock SPI is similar to the Winsock API in that all the basic socket functions appear. Support

functions like htonl(), htons(), ntohl(), ntohs(), inet_addr(), and inet_ntoa() are implemented in the

Winsock DLL, and are not passed down to SPI.

If an extended version of a function and the original version of a function both exist in the API, only the

extended version will show up in the SPI. For example, connect() and WSAConnect() will both map to

WSPConnect(), accept() and WSAAccept() to WSPAccept(), and socket() and WSASocket() to

WSPSocket().

Since error codes are returned along with SPI functions, equivalents of WSAGetLastError() and

WSASetLastError() are not needed in the SPI.

Shared sockets, and Winsock service provider enumeration are both realized in the Winsock DLL, thus

WSADuplicateSocketand WSAEnumProtocols() do not appear as SPI functions.

2.7 Differences Between 32-bit and 16-bit Winsock SPI

In 32-bit environments the service providers are responsible for implementing blocking behavior. All

blocking hook related API functions such as WSAIsBlocking(), WSACancelBlockingCall(),

WSASetBlockingHook(), and WSAUnhookBlockingHook() appear in SPI. All event object related API

functions are implemented as #define macros, mapping the Winsock event functions to native Win32 event

functions.

In 16-bit environments the Winsock DLL implements all blocking behavior (as pseudo blocking), and all

SPI sockets are strictly non-blocking. All the blocking hook related API functions such as

WSAIsBlocking(), WSACancelBlockingCall(), WSASetBlockingHook(), and

WSAUnhookBlockingHook() do not appear in the 16 bit SPI because the blocking hook implementation is

realized in Winsock2.DLL. Similarly, all the event object related API functions are also implemented in

14

Winsock2.DLL, e.g., WSACreateEvent(), WSACloseEvent(), WSASetEvent(), WSAResetEvent(),

WSAWaitForMultipleEvents(), and WSAGetOverlappedResult().

2.8 Sockets 2.8.1 Out-of-band data

Note: The following discussion of out-of-band data, also referred to as TCP Urgent data, follows the model

used in the Berkeley software distribution. Users and implementors should be aware of the fact that there

are at present two conflicting interpretations of RFC 793 (in which the concept is introduced), and that the

implementation of out-of-band data in the Berkeley Software Distribution does not conform to the Host

Requirements laid down in RFC 1122. To minimize interoperability problems, applications writers are

advised not to use out-of-band data unless this is required in order to interoperate with an existing service.

Winsock suppliers are urged to document the out-of-band semantics (BSD or RFC 1122) which their

product implements. It is beyond the scope of this specification to mandate a particular set of semantics for

out-of-band data handling.

Note that the out-of-band data functionality is mainly inherited from the TCP/IP world, and may not be

available to other communication domains supported by this specification.

The stream socket abstraction includes the notion of "out of band'' data. Out-of-band data is a logically

independent transmission channel associated with each pair of connected stream sockets. Out-of-band data

is delivered to the user independently of normal data. The abstraction defines that the out-of-band data

facilities must support the reliable delivery of at least one out-of-band message at a time. This message may

contain at least one byte of data, and at least one message may be pending delivery to the user at any one

time. For communications protocols which support only in-band signaling (i.e., the urgent data is delivered

in sequence with the normal data), the system normally extracts the data from the normal data stream and

stores it separately. This allows users to choose between receiving the urgent data in order and receiving it

out of sequence without having to buffer all the intervening data. It is possible to "peek'' at out-of-band data.

An application may prefer to process out-of-band data "in-line", as part of the normal data stream. This is

achieved by setting the socket option SO_OOBINLINE (see section 3.1., WSPSetSockOpt()). In this case,

the application may wish to determine whether any of the unread data is "urgent" (the term usually applied

to in-line out-of-band data). To facilitate this, the Winsock service provider will maintain a logical "mark"

in the data stream to indicate the point at which the out-of-band data was sent. An application can use the

SIOCATMARK WSPIoctlSocket() command (see section 3.1.6) to determine whether there is any unread

data preceding the mark. For example, it might use this to resynchronize with its peer by ensuring that all

data up to the mark in the data stream is discarded when appropriate.

2.8.2 Socket Options

The socket options supported by Winsock SPI are listed and described in the pages describing

WSPSetSockOpt() and WSPGetSockOpt(). A summary of the available options and the default value for

each is shown in the following table.

15

Value Type Meaning Default Note

SO_ACCEPTCONN BOOL Socket is WSPListen()ing. FALSE unless a

WSPListen() has

been performed

get

only

SO_BROADCAST BOOL Socket is configured for the

transmission of broadcast

messages.

FALSE (i)

SO_DEBUG BOOL Debugging is enabled. FALSE (i)

SO_DONTLINGER BOOL If true, the SO_LINGER

option is disabled.

TRUE

SO_DONTROUTE BOOL Routing is disabled. FALSE (i)

SO_FLOWSPEC char FAR * The flow spec of this socket. NULL get

only

SO_GROUP_FLOWSPEC char FAR * The flow spec of the socket

group to which this socket

belongs.

NULL get

only

SO_GROUP_ID GROUP The identifier of the group to

which this socket belongs.

NULL get

only

SO_GROUP_PRIORITY int The relative priority for sockets

that are part of a socket group.

0 (i)

SO_KEEPALIVE BOOL Keepalives are being sent. FALSE (i)

SO_LINGER struct linger Returns the current linger

options.

l_onoff is 0

SO_MAX_MSG_SIZE unsigned

int

Maximum size of a message

for message-oriented socket

types (e.g. DGRAM). Has no

meaning for stream-oriented

sockets.

Implementation

dependent

get

only

SO_OOBINLINE BOOL Out-of-band data is being

received in the normal data

stream.

FALSE

SO_PROTOCOL_INFO struct

PROTOCO

L_INFO

Description of protocol info for

protocol that is bound to this

socket.

Protocol dependent get

only

SO_RCVBUF int Buffer size for receives Implementation

dependent

(i)

SO_REUSEADDR BOOL The address to which this

socket is bound can be used by

others.

FALSE

SO_SNDBUF int Buffer size for sends Implementation

dependent

(i)

SO_TYPE int The type of the socket (e.g.

SOCK_STREAM).

As created via

WSPSocket()

get

only

PVD_CONFIG char FAR * An opaque data structure

object containing configuration

information of the service

provider.

Implementation

dependent

TCP_NODELAY BOOL Disables the Nagle algorithm

for send coalescing.

Implementation

dependent

Notes:

(i) An implementation may silently ignore this option on WSPSetSockOpt() and return a

constant value for WSPGetSockOpt(), or it may accept a value for WSPSetSockOpt()

16

and return the corresponding value in WSPGetSockOpt() without using the value in any

way.

2.9 Quality of Service (QOS)

2.9.1 Overall Approach

The basic QOS mechanism in Winsock descends from the flow specification (or "flow spec") as described

by Craig Partridge in RFC 1363, dated September 1992. A brief overview of this concept is as follows:

 Flow specs describe a set of characteristics about a proposed connection-oriented, unidirectional flow

through the network. An application may associate a pair of flow specs with a socket at the time a

connection request is made. Flow specs indicate parametrically what level of service is required and also

stipulate whether the application is willing to be flexible if the requested level of service is not available.

After a connection is established, the application may retrieve the flow specs associated with the socket and

examine the contents to discover the level of service that the network is willing and/or able to provide. If the

service provided is not acceptable, the application may close the socket and take whatever action is

appropriate (e.g. scale back and ask for a lower quality of service, try again later, notify the user and exit,

etc.)

Even after a flow is established, conditions in the network may change resulting in a reduction (or increase)

in the available service level. A notification mechanism is included which utilizes the usual Winsock 2

notification techniques to indicate to the application that QOS levels have changed. The app should again

retrieve the corresponding flow specs and examine them in order to discover what aspect of the service

level has changed.

The flow specs proposed for Winsock 2 divide QOS characteristics into the following general areas:

1. Network bandwidth utilization - The manner in which the application's traffic will be injected into the

network. This includes specifications for average bandwidth utilization, peak bandwidth, and maximum

burst duration.

2. Latency - Upper limits on the amount of delay and delay variation that are acceptable.

3. Level of service guarantee - Whether or not an absolute guarantee is required as opposed to best effort.

Note that providers which have no feasible way to provide the level of service requested are expected

to fail the connection attempt.

4. Cost - This is a place holder for a future time when a meaningful cost metric can be determined.

5. Provider-specific parameters - The flow spec itself can be extended in ways that are particular to

specific providers, and the assumed provider can be identified.

An application indicates its desire for a non-default flow spec at the time a connection request is made (see

WSPConnect () and WSPAccept()). Since establishing a flow spec'd connection is likely to involve

cooperation and/or negotiation between intermediate routers and hosts, the results of a flow spec request

cannot be determined until after the connection operation is fully completed. After this time, the application

may use getsockopt() to retrieve the resulting flow spec structure so that it can determine what the network

was willing and/or able to supply.

2.9.2 The Flow Spec Structure

17

The Winsock 2 flow spec structure is defined in Winsock2.h and is reproduced here.

typedef enum
{

GuaranteedService,
BestEffortService

} GUARANTEE;

typedef struct _flowparams
{

int64 AverageBandwith;// In Bytes/sec
int64 PeakBandwidth; // In Bytes/sec
int64 BurstLength; // In microseconds
int64 Latency; // In microseconds
int64 DelayVariation;// In microseconds
GUARANTEE levelOfGuarantee;// Guaranteed or

// Best Effort
int32 CostOfCall; // Reserved for future

// use, must be set to 0
int32 ProviderId; // Provider Identifier
int32 SizePSP; // Length of provider

// specific parameters
 UCHAR ProviderSpecificParams[1];// provider specific

// parameters
} FLOWPARAMS;

typedef struct _QualityOfService
{
 FLOWPARAMS ForwardFP; // Caller(Initiator) to callee

FLOWPARAMS BackwardFP; // Callee to caller
} QOS, FAR * LPQOS;

18

3. SERVICE PROVIDER INTERFACE REFERENCE

3.1 Socket Routines

This chapter presents the service provider socket library routines in alphabetical order, and describes each

routine in detail.

In each routine it is indicated that the header file ws2spi.h must be included. The Windows header file

windows.h is also needed, but ws2spi.h will include it if necessary.

19

3.1.1 WSPBind()

Description Associate a local address with a socket.

 #include <ws2spi.h>

int WSPAPI WSPBind (SOCKET s, const struct sockaddr FAR * name, int namelen,

int FAR * lpErrno);

s A descriptor identifying an unbound socket.

name The address to assign to the socket. The sockaddr structure is defined as

follows:

struct sockaddr {
u_short sa_family;
char sa_data[14];

};

namelen The length of the name.

lpErrno A pointer to the error code.

Remarks This routine is used on an unconnected connectionless or connection-oriented socket,

before subsequent WSPConnect()s or WSPListen()s. When a socket is created with

WSPsocket(), it exists in a name space (address family), but it has no name assigned.

WSPBind() establishes the local association of the socket by assigning a local name to an

unnamed socket.

As an example, in the Internet address family, a name consists of three parts: the address

family, a host address, and a port number which identifies the application. In Winsock 2,

the name parameter is not strictly interpreted as a pointer to a "sockaddr" struct. It is cast

this way for Windows Sockets 1.1 compatibility. Service providers are free to regard it as

a pointer to a block of memory of size namelen. The first two bytes in this block

(corresponding to "sa_family" in the "sockaddr" declaration) must contain the address

family that was used to create the socket. Otherwise an error WSAEFAULT will occur.

Return Value If no error occurs, WSPBind() returns 0. Otherwise, it returns SOCKET_ERROR, and a

specific error code is available in lpErrno.

Error Codes WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The specified address is already in use. (See the

SO_REUSEADDR socket option under

WSPSetSockOpt().)

WSAEFAULT The namelen argument is too small, the name

argument contains incorrect address format for the

associated address family, or the first two bytes of the

memory block specified by name does not match the

address family associate with the socket descriptor s.

20

WSAEINPROGRESS The function is invoked when a callback is in

progress.

WSAEINVAL The socket is already bound to an address.

WSAENOBUFS Not enough buffers available, too many connections.

WSAENOTSOCK The descriptor is not a socket.

See Also WSPConnect(), WSPListen(), WSPGetSockName(), WSPSetSockOpt(),

WSPsocket(), .

21

3.1.2 WSPCloseSocket()

Description Close a socket.

 #include <ws2spi.h>

int WSPAPI WSPCloseSocket (SOCKET s, int FAR * lpErrno);

s A descriptor identifying a socket.

lpErrno A pointer to the error code.

Remarks This function closes a socket. More precisely, it releases the socket descriptor s, so that

further references to s will fail with the error WSAENOTSOCK.

The semantics of WSPCloseSocket() are affected by the socket options SO_LINGER

and SO_DONTLINGER as follows:

Option Interval Type of close Wait for close?

SO_DONTLINGER Don't care Graceful No

SO_LINGER Zero Hard No

If SO_LINGER is set (i.e. the l_onoff field of the linger structure is non-zero; see sections

3.1.5 and 3.1.) with a zero timeout interval (l_linger is zero), WSPCloseSocket() is not

blocked even if queued data has not yet been sent or acknowledged. This is called a

"hard" or "abortive" close, because the socket's virtual circuit is reset immediately, and

any unsent data is lost. Any WSPRecv() call on the remote side of the circuit will fail

with WSAECONNRESET.

If SO_DONTLINGER is set on a stream socket (i.e. the l_onoff field of the linger

structure is zero; see sections 3.1.5 and 3.1.), the WSPCloseSocket() call will return

immediately. However, any data queued for transmission will be sent if possible before

the underlying socket is closed. This is called a graceful disconnect. Note that in this case

the Winsock service provider may not release the socket and other resources for an

arbitrary period, which may affect applications which expect to use all available sockets.

Return Value If no error occurs, WSPCloseSocket() returns 0. Otherwise, a value of

SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Error Codes WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS The function is invoked when a callback is in

progress.

WSAENOTSOCK The descriptor is not a socket.

See Also WSPAccept, WSPsocket(), WSPIoctlSocket(), WSPSetSockOpt().

22

3.1.3 WSPGetPeerName()

Description Get the address of the peer to which a socket is connected.

 #include <ws2spi.h>

int WSPAPI WSPGetPeerName (SOCKET s, struct sockaddr FAR * name, int FAR

* namelen, int FAR * lpErrno);

s A descriptor identifying a connected socket.

name The structure which is to receive the name of the peer.

namelen A pointer to the size of the name structure.

lpErrno A pointer to the error code.

Remarks WSPGetPeerName() retrieves the name of the peer connected to the socket s and stores

it in the struct sockaddr identified by name. It is used on a connected socket.

On return, the namelen argument contains the actual size of the name returned in bytes.

Return Value If no error occurs, WSPGetPeerName() returns 0. Otherwise, a value of

SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Error Codes WSAENETDOWN The network subsystem has failed.

WSAEFAULT The namelen argument is not large enough.

WSAEINPROGRESS The function is invoked when a callback is in

progress.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

See Also WSPBind(), WSPsocket(), WSPGetSockName().

23

3.1.4 WSPGetSockName()

Description Get the local name for a socket.

 #include <ws2spi.h>

 int WSPAPI WSPGetSockName (SOCKET s, struct sockaddr FAR * name,

int FAR * namelen, int FAR * lpErrno);

s A descriptor identifying a bound socket.

name Receives the address (name) of the socket.

namelen The size of the name buffer.

lpErrno A pointer to the error code.

Remarks WSPGetSockName() retrieves the current name for the specified socket descriptor in

name. It is used on a bound and/or connected socket specified by the s parameter. The

local association is returned. This call is especially useful when a WSPConnect() call has

been made without doing a WSPBind() first; as this call provides the only means by

which the local association which has been set by the service provider can be determined.

On return, the namelen argument contains the actual size of the name returned in bytes.

If a socket was bound to an unspecified address (e.g., ADDR_ANY), indicating that any

of the host's addresses within the specified address family should be used for the socket,

WSPGetSockName() will not necessarily return information about the host address,

unless the socket has been connected with WSPConnect() or WSPAccept. The Winsock

DLL must not assume that the address will be specified unless the socket is connected.

This is because for a multi-homed host the address that will be used for the socket is

unknown unless the socket is connected.

Return Value If no error occurs, WSPGetSockName() returns 0. Otherwise, a value of

SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Error Codes WSAENETDOWN The network subsystem has failed.

WSAEFAULT The namelen argument is not large enough, or the

name or namelen argument is not part of the user

address space.

WSAEINPROGRESS The function is invoked when a callback is in

progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEINVAL The socket has not been bound to an address with

WSPBind(), or ADDR_ANY is specified in

WSPBind() but connection has not yet occurs.

See Also WSPBind(), WSPsocket(), WSPGetPeerName().

24

3.1.5 WSPGetSockOpt()

Description Retrieve a socket option.

 #include <ws2spi.h>

 int WSPAPI WSPGetSockOpt (SOCKET s, int level, int optname,

char FAR * optval, int FAR * optlen, int FAR * lpErrno);

s A descriptor identifying a socket.

level The level at which the option is defined; the only supported levels are

SOL_SOCKET and SOL_PROVIDER. (SOL_PROVIDER is defined

to be an alias for IPPROTO_TCP for the sake of compatibility with

Windows Sockets specification 1.1.)

optname The socket option for which the value is to be retrieved.

optval A pointer to the buffer in which the value for the requested option is to

be returned.

optlen A pointer to the size of the optval buffer.

lpErrno A pointer to the error code.

Remarks WSPGetSockOpt() retrieves the current value for a socket option associated with a

socket of any type, in any state, and stores the result in optval. Options may exist at

multiple protocol levels, but they are always present at the uppermost "socket'' level.

Options affect socket operations, such as the routing of packets, out-of-band data transfer,

etc.

The value associated with the selected option is returned in the buffer optval. The integer

pointed to by optlen should originally contain the size of this buffer; on return, it will be

set to the size of the value returned. For SO_LINGER, this will be the size of a struct

linger; for most other options it will be the size of an integer.

The Winsock DLL is responsible for allocating any memory space pointed to directly or

indirectly by any of the parameters it specifies.

If the option was never set with WSPSetSockOpt(), then WSPGetSockOpt() returns the

default value for the option.

level = SOL_SOCKET

Value Type Meaning

SO_ACCEPTCONN BOOL Socket is WSPListen()ing.

SO_BROADCAST BOOL Socket is configured for the transmission of

broadcast messages.

SO_DEBUG BOOL Debugging is enabled.

SO_DONTLINGER BOOL If true, the SO_LINGER option is disabled.

SO_DONTROUTE BOOL Routing is disabled.

SO_FLOWSPEC char FAR * The flow spec of this socket.

25

SO_GROUP_FLOWSPEC char FAR * The flow spec of the socket group to which this

socket belongs.

SO_GROUP_ID GROUP The identifier of the group to which this socket

belongs.

SO_GROUP_PRIORITY int The relative priority for sockets that are part of

a socket group.

SO_KEEPALIVE BOOL Keepalives are being sent.

SO_LINGER struct linger Returns the current linger options.

SO_MAX_MSG_SIZE unsigned int Maximum size of a message for message-

oriented socket types (e.g. DGRAM). Has no

meaning for stream-oriented sockets.

SO_OOBINLINE BOOL Out-of-band data is being received in the

normal data stream.

SO_PROTOCOL_INFO struct

PROTOCO

L_INFO

Description of protocol info for protocol that is

bound to this socket.

SO_RCVBUF int Buffer size for receives

SO_REUSEADDR BOOL The socket may be bound to an address which

is already in use.

SO_SNDBUF int Buffer size for sends

SO_TYPE int The type of the socket (e.g. SOCK_STREAM).

level = SOL_PROVIDER

 (also aliased to IPPROTO_TCP)

PVD_CONFIG Service

Provider

Dependent

An "opaque" data structure object from the

service provider associated with socket s. This

object stores the current configuration

information of the service provider. The exact

format of this data structure is service provider

specific.

TCP_NODELAY BOOL Disables the Nagle algorithm for send

coalescing.

BSD options not supported for WSPGetSockOpt() are:

Value Type Meaning

SO_ERROR int Get error status and clear

SO_RCVLOWAT int Receive low water mark

SO_RCVTIMEO int Receive timeout

SO_SNDLOWAT int Send low water mark

SO_SNDTIMEO int Send timeout

IP_OPTIONS Get options in IP header.

TCP_MAXSEG int Get TCP maximum segment size.

Calling WSPGetSockOpt() with an unsupported option will result in an error code of

WSAENOPROTOOPT being returned in lpErrno.

SO_DEBUG

Winsock service providers are encouraged (but not required) to supply output debug

information if the SO_DEBUG option is set by an application. The mechanism for

generating the debug information and the form it takes are beyond the scope of this

specification.

26

SO_FLOWSPEC

This is a get-only socket option which indicates the flow spec of the socket. The default

flow spec defined in Sec. 2.8.3 will be returned before the application sets the flow spec

for this socket. The WSAENOPROTOOPT error code is indicated for service providers

which do not support the flow spec option. See WSPConnect() about how to set the flow

spec.

SO_GROUP_FLOWSPEC

This is a get-only socket option which indicates the flow spec of the group this socket

belongs to. The default flow spec defined in Sec. 2.8.3 will be returned before the

application sets the flow spec for this socket group. The WSAENOPROTOOPT error

code is indicated for service providers which do not support the group flow spec option.

If this socket does not belong to an appropriate socket group, the Flen and Blen fields of

the returned QOS struct are set to 0. See WSPConnect() about how to set the flow spec.

SO_GROUP_ID

This is a get-only socket option which indicates the identifier of the group this socket

belongs to. If this socket is not a group socket, the value is NULL.

SO_GROUP_PRIORITY

Group priority indicates the relative priority of the specified socket relative to other

sockets within the socket group. Values are non-negative integers, with zero

corresponding to the highest priority. Priority values represent a hint to the underlying

service provider about how potentially scarce resources should be allocated. For example,

whenever two or more sockets are both ready to transmit data, the highest priority socket

(lowest value for SO_GROUP_PRIORITY) should be serviced first, with the remainder

serviced in turn according to their relative priorities.

The WSAENOPROTOOPT error code is indicated for non group sockets or for service

providers which do not support group sockets.

SO_KEEPALIVE

An application may request that a TCP/IP service provider enable the use of "keep-alive"

packets on TCP connections by turning on the SO_KEEPALIVE socket option. A

Winsock provider need not support the use of keep-alives: if it does, the precise semantics

are implementation-specific but should conform to section 4.2.3.6 of RFC 1122:

Requirements for Internet Hosts -- Communication Layers. If a connection is dropped as

the result of "keep-alives" the error code WSAENETRESET is returned to any calls in

progress on the socket, and any subsequent calls will fail with WSAENOTCONN.

SO_LINGER

SO_LINGER controls the action taken when unsent data is queued on a socket and a

WSPCloseSocket() is performed. See WSPCloseSocket() for a description of the way in

which the SO_LINGER settings affect the semantics of WSPCloseSocket(). The

application gets the desired behavior by creating a struct linger (pointed to by the optval

argument) with the following elements:

struct linger {
int l_onoff;
int l_linger;

}

SO_MAX_MSG_SIZE

27

This is a get-only socket option which indicates the maximum size of a message for

message-oriented socket types (e.g. DGRAM) as implemented by a particular service

provider. It has no meaning for byte stream oriented sockets

SO_REUSEADDR

By default, a socket may not be bound (see WSPBind()) to a local address which is

already in use. On occasions, however, it may be desirable to "re-use" an address in this

way. Since every connection is uniquely identified by the combination of local and remote

addresses, there is no problem with having two sockets bound to the same local address as

long as the remote addresses are different. To inform the Winsock provider that a

WSPBind() on a socket should not be disallowed because the desired address is already

in use by another socket, the application should set the SO_REUSEADDR socket option

for the socket before issuing the WSPBind(). Note that the option is interpreted only at

the time of the WSPBind(): it is therefore unnecessary (but harmless) to set the option on

a socket which is not to be bound to an existing address, and setting or resetting the

option after the WSPBind() has no effect on this or any other socket.

. . PVD_CONFIG

This option retrieves an "opaque" data structure object from the service provider

associated with socket s. This object stores the current configuration information of the

service provider. The exact format of this data structure is service provider specific.

TCP_NODELAY

The TCP_NODELAY option disables the Nagle algorithm. The Nagle algorithm is used

to reduce the number of small packets sent by a host by buffering unacknowledged send

data until a full-size packet can be sent. However, for some applications this algorithm

can impede performance, and TCP_NODELAY may be used to turn it off. Application

writers should not set TCP_NODELAY unless the impact of doing so is well-understood

and desired, since setting TCP_NODELAY can have a significant negative impact of

network performance.

. .

Return Value If no error occurs, WSPGetSockOpt() returns 0. Otherwise, a value of

SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Error Codes WSAENETDOWN The network subsystem has failed.

WSAEFAULT The optlen argument was invalid.

WSAEINVAL No value available for optname at the moment.

WSAEINPROGRESS The function is invoked when a callback is in

progress.

WSAENOPROTOOPT The option is unknown or unsupported by the

indicated protocol family.

WSAENOTSOCK The descriptor is not a socket.

See Also WSPSetSockOpt(),WSPsocket().

28

3.1.6 WSPIoctlSocket()

Description Control the mode of a socket.

 #include <ws2spi.h>

 int WSPAPI WSPIoctlSocket (SOCKET s, long cmd, u_long FAR * argp,

int FAR * lpErrno);

s A descriptor identifying a socket.

cmd The command to perform on the socket s.

argp A pointer to a parameter for cmd.

lpErrno A pointer to the error code.

Remarks This routine may be used on any socket in any state. It is used to get or retrieve operating

parameters associated with the socket, independent of the protocol and communications

subsystem. The following commands are supported:

Command Semantics

FIONREAD Determine the amount of data which can be read atomically from socket

s. argp points at an unsigned long in which WSPIoctlSocket() stores

the result. If s is stream-oriented (e.g., type SOCK_STREAM),

FIONREAD returns the total amount of data which may be read in a

single WSPRecv(); this is normally the same as the total amount of data

queued on the socket. If s is message-oriented (e.g., type

SOCK_DGRAM), FIONREAD returns the size of the first datagram

(message) queued on the socket.

SIOCATMARK Determine whether or not all out-of-band data has been read. This

applies only to a socket of stream style (e.g., type SOCK_STREAM)

which has been configured for in-line reception of any out-of-band data

(SO_OOBINLINE). If no out-of-band data is waiting to be read, the

operation returns TRUE. Otherwise it returns FALSE, and the next

WSPRecv() or WSPRecvFrom() performed on the socket will retrieve

some or all of the data preceding the "mark"; the application should use

the SIOCATMARK operation to determine whether any remains. If

there is any normal data preceding the "urgent" (out of band) data, it

will be received in order. (Note that a WSPRecv() or

WSPRecvFrom() will never mix out-of-band and normal data in the

same call.) argp points at a BOOL in which WSPIoctlSocket() stores

the result.

Compatibility This function is a subset of ioctl() as used in Berkeley sockets. In particular, there is no

command which is equivalent to FIOASYNC.

{where should we break the news about not allowing any new ioctls to be introduced? }

{Not here. This is more of a charter/requirements issue for the API extension group.}

Return Value Upon successful completion, the WSPIoctlSocket() returns 0. Otherwise, a value of

SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

29

Error Codes WSAENETDOWN The network subsystem has failed.

WSAEINVAL cmd is not a valid command, or argp is not an

acceptable parameter for cmd, or the command is not

applicable to the type of socket supplied

WSAEINPROGRESS The function is invoked when a callback is in

progress.

WSAENOTSOCK The descriptor s is not a socket.

See Also WSPsocket(), WSPSetSockOpt(), WSPGetSockOpt().

30

3.1.7 WSPListen()

Description Establish a socket to listen for incoming connection.

 #include <ws2spi.h>

 int WSPAPI WSPListen (SOCKET s, int backlog, int FAR * lpErrno);

s A descriptor identifying a bound, unconnected socket.

backlog The maximum length to which the queue of pending connections may

grow.

lpErrno A pointer to the error code.

Remarks To accept connections, a socket is first created with WSPsocket(), a backlog for

incoming connections is specified with WSPListen(), and then the connections are

accepted with WSPAccept. WSPListen() applies only to sockets that are connection-

oriented (e.g., SOCK_STREAM). The socket s is put into "passive'' mode where

incoming connections are acknowledged and queued pending acceptance by the process.

This function is typically used by servers that could have more than one connection

request at a time: if a connection request arrives with the queue full, the client will receive

an error with an indication of WSAECONNREFUSED.

Compatibility backlog is currently limited (silently) to SOMAXCONN, which is defined to be 5 in the

header file. As in 4.3BSD, illegal values (less than 1 or greater than 5) are replaced by the

nearest legal value.

{Why do we still enforce this? NT limits the backlog to 100, not 5, because BIG servers

(like ftp.microsoft.com) often receive periodic floods of connection requests, easily

overrunning a backlog of 5 connections.}

Return Value If no error occurs, WSPListen() returns 0. Otherwise, a value of SOCKET_ERROR is

returned, and a specific error code is available in lpErrno.

Error Codes WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE An attempt has been made to WSPListen() on an

address in use.

WSAEINPROGRESS The function is invoked when a callback is in

progress.

WSAEINVAL The socket has not been bound with WSPBind().

WSAEISCONN The socket is already connected.

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

31

WSAEOPNOTSUPP The referenced socket is not of a type that supports

the WSPListen() operation.

See Also WSPAccept, WSPConnect(), WSPsocket().

32

3.1.8 WSPSelect()

Description Determine the status of one or more sockets.

 #include <ws2spi.h>

 int WSPAPI WSPSelect (int nfds, fd_set FAR * readfds, fd_set FAR * writefds, fd_set

FAR * exceptfds, const struct timeval FAR * timeout, int FAR * lpErrno);

nfds This argument is ignored and included only for the sake of

compatibility.

readfds An optional pointer to a set of sockets to be checked for readability.

writefds An optional pointer to a set of sockets to be checked for writability

exceptfds An optional pointer to a set of sockets to be checked for errors.

timeout . The maximum time for WSPSelect() to wait, or NULL for a blocking

operation. Note that the 16-bit Winsock DLL will always pass in a

timeout of zero to perform a non-blocking poll on the socket set(s). The

32-bit Winsock DLL may pass in any timeout value.

lpErrno A pointer to the error code.

Remarks This function is . . used to determine the status of one or more sockets. For each socket,

the caller may request information on read, write or error status. The set of sockets for

which a given status is requested is indicated by an fd_set structure. All entries in an

fd_set correspond to sockets created by the service provider. Upon return, the structure is

updated to reflect the subset of these sockets which meet the specified condition, and

WSPSelect() returns the total number of sockets meeting the conditions. A set of macros

is provided for manipulating an fd_set. These macros are compatible with those used in

the Berkeley software, but the underlying representation is completely different.

The parameter readfds identifies those sockets which are to be checked for readability. If

the socket is currently WSPListen()ing, it will be marked as readable if an incoming

connection request has been received, so that an WSPAccept is guaranteed to complete

immediately. For other sockets, readability means that queued data is available for

reading or, for connection-oriented sockets, that the virtual circuit corresponding to the

socket has been closed, so that a WSPRecv() or WSPRecvFrom() is guaranteed to

complete immediately. If the virtual circuit was closed gracefully, then a WSPRecv() will

return immediately with 0 bytes read; if the virtual circuit was reset, then a WSPRecv()

will complete immediately with the error code WSAECONNRESET. The presence of

out-of-band data will be checked if the socket option SO_OOBINLINE has been enabled

(see WSPSetSockOpt()).

The parameter writefds identifies those sockets which are to be checked for writability. If

a socket is WSPConnect()ing, writability means that the connection establishment

successfully completed. If the socket is not in the process of WSPConnect()ing,

writability means that a WSPSend() or WSPSendTo() will complete immediately. [It is

not specified how long this guarantee can be assumed to be valid, particularly in a

multithreaded environment.]

33

The parameter exceptfds identifies those sockets which are to be checked for the presence

of out-of-band data or any exceptional error conditions. Note that out-of-band data will

only be reported in this way if the option SO_OOBINLINE is FALSE. For a connection-

oriented socket, the breaking of the connection by the peer or due to KEEPALIVE failure

will be indicated as an exception. This specification does not define which other errors

will be included. If a socket is WSPConnect()ing, failure of the connect attempt is

indicated in exceptfds.

Any of readfds, writefds, or exceptfds may be given as NULL if no descriptors are of

interest.

Four macros are defined in the header file ws2spi.h for manipulating the descriptor sets.

The variable FD_SETSIZE determines the maximum number of descriptors in a set. (The

default value of FD_SETSIZE is 64, which may be modified by #defining FD_SETSIZE

to another value before #including ws2spi.h.) Internally, an fd_set is represented as an

array of SOCKETs; the last valid entry is followed by an element set to

INVALID_SOCKET. The macros are:

FD_CLR(s, *set) Removes the descriptor s from set.

FD_ISSET(s, *set) Nonzero if s is a member of the set, zero otherwise.

FD_SET(s, *set) Adds descriptor s to set.

FD_ZERO(*set) Initializes the set to the NULL set.

Return Value WSPSelect() returns the total number of descriptors which are ready and contained in the

fd_set structures, or SOCKET_ERROR if an error occurred. If the return value is

SOCKET_ERROR, a specific error code is available in lpErrno.

Comments WSPSelect () has no effect on the persistence of socket events registered with

WSPEventSelect().

Error Codes WSAEFAULT The Winsock service provider was unable to

allocated needed resources for its internal operations,

or the readfds, writefds, or exceptfds parameters are

not part of the user address space.

WSAENETDOWN The network subsystem has failed.

.

WSAENOTSOCK One of the descriptor sets contains an entry which is

not a socket.

See Also WSPAccept(), WSPConnect(), WSPRecv(), WSPRecvFrom(), WSPSend(),

WSPSendTo(), WSPEventSelect()

34

3.1.9 WSPSetSockOpt()

Description Set a socket option.

 #include <ws2spi.h>

 int WSPAPI WSPSetSockOpt (SOCKET s, int level, int optname,

const char FAR * optval, int optlen, int FAR * lpErrno);

s A descriptor identifying a socket.

level The level at which the option is defined; the only supported levels are

SOL_SOCKET and SOL_PROVIDER. (SOL_PROVIDER is defined

to be an alias for IPPROTO_TCP for the sake of compatibility with

Windows Sockets specification 1.1.)

optname The socket option for which the value is to be set.

optval A pointer to the buffer in which the value for the requested option is

supplied.

optlen The size of the optval buffer.

lpErrno A pointer to the error code.

Remarks WSPSetSockOpt() sets the current value for a socket option associated with a socket of

any type, in any state. Although options may exist at multiple protocol levels, they are

always present at the uppermost "socket'' level. Options affect socket operations, such as

whether broadcast messages may be sent on the socket, etc.

There are two types of socket options: Boolean options that enable or disable a feature or

behavior, and options which require an integer value or structure. To enable a Boolean

option, optval points to a nonzero integer. To disable the option optval points to an

integer equal to zero. optlen should be equal to sizeof(int) for Boolean options. For other

options, optval points to the an integer or structure that contains the desired value for the

option, and optlen is the length of the integer or structure.

level = SOL_SOCKET

Value Type Meaning

SO_BROADCAST BOOL Allow transmission of broadcast messages on

the socket.

SO_DEBUG BOOL Record debugging information.

SO_DONTLINGER BOOL Don't block close waiting for unsent data to be

sent. Setting this option is equivalent to setting

SO_LINGER with l_onoff set to zero.

SO_DONTROUTE BOOL Don't route: send directly to interface.

SO_GROUP_PRIORITY int Specify the relative priority to be established

for sockets that are part of a socket group.

SO_KEEPALIVE BOOL Send keepalives

SO_LINGER struct linger Linger on close if unsent data is present

35

SO_OOBINLINE BOOL Receive out-of-band data in the normal data

stream.

SO_RCVBUF int Specify buffer size for receives

SO_REUSEADDR BOOL Allow the socket to be bound to an address

which is already in use. (See bind().)

SO_SNDBUF int Specify buffer size for sends.

level = SOL_PROVIDER

(aliased to IPPROTO_TCP)

PVD_CONFIG Service

Provider

Dependent

This object stores the configuration

information for the service provider associated

with socket s. The exact format of this data

structure is service provider specific.

TCP_NODELAY BOOL Disables the Nagle algorithm for send

coalescing.

BSD options not supported for WSPSetSockOpt() are:

Value Type Meaning

SO_ACCEPTCONN BOOL Socket is listening

SO_ERROR int Get error status and clear

SO_RCVLOWAT int Receive low water mark

SO_RCVTIMEO int Receive timeout

SO_SNDLOWAT int Send low water mark

SO_SNDTIMEO int Send timeout

SO_TYPE int Type of the socket

IP_OPTIONS Set options field in IP header.

SO_DEBUG

Winsock service providers are encouraged (but not required) to supply output debug

information if the SO_DEBUG option is set by an application. The mechanism for

generating the debug information and the form it takes are beyond the scope of this

specification.

SO_GROUP_PRIORITY

Group priority indicates the relative priority of the specified socket relative to other

sockets within the socket group. Values are non-negative integers, with zero

corresponding to the highest priority. Priority values represent a hint to the underlying

service provider about how potentially scarce resources should be allocated. For example,

whenever two or more sockets are both ready to transmit data, the highest priority socket

(lowest value for SO_GROUP_PRIORITY) should be serviced first, with the remainder

serviced in turn according to their relative priorities.

The WSAENOPROTOOPT error is indicated for non group sockets or for service

providers which do not support group sockets.

SO_KEEPALIVE

An application may request that a TCP/IP provider enable the use of "keep-alive" packets

on TCP connections by turning on the SO_KEEPALIVE socket option. A Winsock

provider need not support the use of keep-alives: if it does, the precise semantics are

implementation-specific but should conform to section 4.2.3.6 of RFC 1122:

Requirements for Internet Hosts -- Communication Layers. If a connection is dropped as

the result of "keep-alives" the error code WSAENETRESET is returned to any calls in

progress on the socket, and any subsequent calls will fail with WSAENOTCONN.

36

SO_LINGER

SO_LINGER controls the action taken when unsent data is queued on a socket and a

WSPCloseSocket() is performed. See WSPCloseSocket() for a description of the way in

which the SO_LINGER settings affect the semantics of WSPCloseSocket(). The

application sets the desired behavior by creating a struct linger (pointed to by the optval

argument) with the following elements:

struct linger {
int l_onoff;
int l_linger;

}

To enable SO_LINGER, the application should set l_onoff to a non-zero value, set

l_linger to 0, and call WSPSetSockOpt(). To enable SO_DONTLINGER (i.e. disable

SO_LINGER) l_onoff should be set to zero and WSPSetSockOpt() should be called.

SO_REUSEADDR

By default, a socket may not be bound (see WSPBind()) to a local address which is

already in use. On occasions, however, it may be desirable to "re-use" an address in this

way. Since every connection is uniquely identified by the combination of local and remote

addresses, there is no problem with having two sockets bound to the same local address as

long as the remote addresses are different. To inform the Winsock provider that a

WSPBind() on a socket should not be disallowed because the desired address is already

in use by another socket, the application should set the SO_REUSEADDR socket option

for the socket before issuing the WSPBind(). Note that the option is interpreted only at

the time of the WSPBind(): it is therefore unnecessary (but harmless) to set the option on

a socket which is not to be bound to an existing address, and setting or resetting the

option after the WSPBind() has no effect on this or any other socket.

PVD_CONFIG

This object stores the configuration information for the service provider associated with

socket s. The exact format of this data structure is service provider specific.

TCP_NODELAY

The TCP_NODELAY option is specific to TCP/IP service providers. It is used to disable

the Nagle algorithm. The Nagle algorithm is used to reduce the number of small packets

sent by a host by buffering unacknowledged send data until a full-size packet can be sent.

However, for some applications this algorithm can impede performance, and

TCP_NODELAY may be used to turn it off. Application writers should not set

TCP_NODELAY unless the impact of doing so is well-understood and desired, since

setting TCP_NODELAY can have a significant negative impact of network performance.

Return Value If no error occurs, WSPSetSockOpt() returns 0. Otherwise, a value of

SOCKET_ERROR is returned, and a specific error code is available in lpErrno.

Error Codes WSAENETDOWN The network subsystem has failed.

WSAEFAULT optval is not in a valid part of the process address

space.

WSAEINPROGRESS The function is invoked when a callback is in

progress.

37

WSAEINVAL level is not valid, or the information in optval is not

valid.

WSAENETRESET Connection has timed out when SO_KEEPALIVE is

set.

WSAENOPROTOOPT The option is unknown or unsupported for the

specified provider.

WSAENOTCONN Connection has been reset when SO_KEEPALIVE is

set.

WSAENOTSOCK The descriptor is not a socket.

See Also WSPBind(), WSPGetSockOpt(), WSPIoctlSocket(), WSPsocket(),

WSPEventSelect().

38

3.1.10 WSPShutdown()

Description Disable sends and/or receives on a socket.

 #include <ws2spi.h>

 int WSPAPI WSPShutdown (SOCKET s, int how, int FAR * lpErrno);

s A descriptor identifying a socket.

how A flag that describes what types of operation will no longer be allowed.

lpErrno A pointer to the error code.

Remarks WSPShutdown() is used on all types of sockets to disable reception, transmission, or

both.

If how is SD_RECEIVE, subsequent receives on the socket will be disallowed. This has

no effect on the lower protocol layers. For TCP, the TCP window is not changed and

incoming data will be accepted (but not acknowledged) until the window is exhausted.

For UDP, incoming datagrams are accepted and queued. In no case will an ICMP error

packet be generated.

If how is SD_SEND, subsequent sends on the socket are disallowed. For TCP sockets, a

FIN will be sent.

Setting how to SD_BOTH disables both sends and receives as described above.

Note that WSPShutdown() does not close the socket, and resources attached to the

socket will not be freed until WSPCloseSocket() is invoked.

Comments WSPShutdown() does not block regardless of the SO_LINGER setting on the socket. An

application should not rely on being able to re-use a socket after it has been shut down. In

particular, a Winsock service provider is not required to support the use of

WSPConnect() on such a socket.

Return Value If no error occurs, WSPShutdown() returns 0. Otherwise, a value of SOCKET_ERROR

is returned, and a specific error code is available in lpErrno.

Error Codes WSAENETDOWN The network subsystem has failed.

WSAEINVAL how is not valid, or is not consistent with the socket

type, e.g., SD_SEND is used with a UNI_RECV

socket type.

WSAEINPROGRESS The function is invoked when a callback is in

progress.

WSAENOTCONN The socket is not connected (connection-oriented

sockets only).

WSAENOTSOCK The descriptor is not a socket.

39

See Also WSPConnect(), WSPsocket().

40

 3.1.11 WSPAccept()

Description Conditionally accept a connection based on the return value of a condition function, and

optionally create and/or join a socket group.

 #include <ws2spi.h>

 SOCKET WSPAPI WSPAccept (SOCKET s, struct sockaddr FAR * addr, int FAR

* addrlen, LPCONDITIONPROC lpfnCondition, DWORD dwCallbackData,

int FAR * lpErrno);

s A descriptor identifying a socket which is listening for connections after

a WSPListen().

addr An optional pointer to a buffer which receives the address of the

connecting entity, as known to the communications layer. The exact

format of the addr argument is determined by the address family

established when the socket was created.

addrlen An optional pointer to an integer which contains the length of the

address addr.

lpfnCondition The address of the optional, the Winsock DLL-supplied condition

function which will make an accept/reject decision based on the caller

information passed in as parameters, and optionally create and/or join a

socket group by assigning appropriate value to the result parameter g of

this function.

dwCallbackData The callback data passed back to the Winsock DLL in the condition

function. This object is not interpreted by the service provider.

lpErrno A pointer to the error code.

Remarks This routine extracts the first connection on the queue of pending connections on s, and

checks it against the condition function, provided the condition function is specified (i.e.,

not NULL). If lpfnCondition is set to NULL, a connection is accepted unconditionally,

and no socket group is created or joined. If the condition function returns CF_ACCEPT,

this routine creates a new socket with the same properties as s and returns a handle to the

new socket, and then optionally creates and/or joins a socket group based on the value of

the result parameter g in the condition function. If the condition function returns

CF_REJECT, this routine rejects this connection request. The condition function runs in

the same thread as this routine does, and should return as soon as possible. If the decision

cannot be made immediately, the condition function will return CF_DEFER to indicate

that no decision has been made, and no action about this connection request should be

taken by the service provider. When the Winsock DLL is ready to take action on the

connection request, it may invoke WSPAccept() again and return either CF_ACCEPT or

CF_REJECT as a return value from the condition function.

If no pending connections are present on the queue, WSPAccept() returns an error as

described below. The accepted socket may not be used to accept more connections. The

original socket remains open.

41

The argument addr is a result parameter that is filled in with the address of the connecting

entity, as known to the communications layer. The exact format of the addr parameter is

determined by the address family in which the communication is occurring. The addrlen

is a value-result parameter; it should initially contain the amount of space pointed to by

addr; on return it will contain the actual length (in bytes) of the address returned. This call

is used with connection-oriented socket types such as SOCK_STREAM. If addr and/or

addrlen are equal to NULL, then no information about the remote address of the accepted

socket is returned. Otherwise, these two parameters will be filled in regardless of whether

the condition function is specified or what it returns.

The prototype of the condition function is as follows:

int WSACALLBACK ConditionFunc(LPWSABUF lpCallerId,

LPWSABUF lpCallerData, LPWSABUF lpCalleeId, LPWSABUF lpCalleeData,

GROUP FAR * g, DWORD dwCallbackData);

LPWSABUF is defined in ws2spi.h as follows:

typedef struct _WSABUF {
int len; // the length of the buffer
char FAR * buf; // the pointer to the buffer

} WSABUF, FAR * LPWSABUF;

ConditionFunc is a placeholder for a Winsock DLL supplied function. It is invoked in

the same thread as WSPAccept(), thus no other Winsock functions can be called. The

lpCallerId and lpCallerData are value parameters which contain the address of the

connecting entity and any user data that was sent along with the connection request,

respectively. The lpCalleeId is a value parameter which contains the local address of the

connected entity. The lpCalleeData is a result parameter in which the condition function

fills in the user data passed back to the connecting entity. lpCalleeData->len initially

contains the length of the buffer allocated by the service provider, and 0 means user data

back to the caller is not supported. If lpCalleeData->len is set to 0, no user data will be

passed back. The exact format of the address and user data is specific to the address

family to which the socket belongs.

The result parameter g is assigned within the condition function to indicate the following

actions:

if g is an existing socket group id, add s to this group, provided all the

requirements set by this group are met; or

if g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket

group and have s as the first member; or

if g = SG_CONSTRAINED_GROUP, create a constrained socket group and

have s as the first member; or

if g = NULL, no operation is performed.

For unconstrained groups, any set of sockets may be grouped together as long as they are

supported by a single Winsock service provider and are connection-oriented. A

constrained socket group requires that connections on all grouped sockets be to the same

host. For newly created socket groups, the new group id can be retrieved by

lpGroupAction or using WSPGetSockOpt() with option SO_GROUP_ID, if this

operation completes successfully.

Return Value If no error occurs, WSPAccept() returns a value of type SOCKET which is a descriptor

for the accepted socket. Otherwise, a value of INVALID_SOCKET is returned, and a

specific error code is available in lpErrno.

42

The integer referred to by addrlen initially contains the amount of space pointed to by

addr. On return it will contain the actual length in bytes of the address returned.

Error Codes WSAENETDOWN The network subsystem has failed.

WSAECONNREFUSED The connection request was forcefully rejected as

indicated in the return value of the condition function

(CF_REJECT).

WSAEFAULT The addrlen argument is too small or the

lpfnCondition is not part of the user address space.

WSAEINPROGRESS The function is invoked when a callback is in

progress.

WSAEINVAL WSPListen() was not invoked prior to

WSPAccept(), parameter g specified in the condition

function is not a valid value, the return value of the

condition function is not a valid one, or any case

where the specified socket is in an invalid state.

WSAEMFILE The queue is non-empty upon entry to WSPAccept()

and there are no socket descriptors available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not a type that supports

connection-oriented service.

WSATRY_AGAIN The acceptance of the connection request was

deferred as indicated in the return value of the

condition function (CF_DEFER).

WSAEWOULDBLOCK No connections are present to be accepted, or the

connection request that was deferred has timed out or

been withdrawn.

See Also WSPAccept(), WSPBind(), WSPConnect(), WSPGetSockOpt(), WSPListen(),

WSPSelect(), WSPsocket(), WSPEventSelect().

43

3.1.12 WSPAsyncSelect32()

Description Request event notification for a socket.

 #include <ws2spi.h>

int WSPAPI WSPAsyncSelect32 (SOCKET s, HWND hWnd,

unsigned int wMsg, long lEvent, int FAR * lpErrno);

s A descriptor identifying the socket for which event notification is

required.

hWnd A handle identifying the window which should receive a message when

a network event occurs.

wMsg The message to be received when a network event occurs.

lEvent A bitmask which specifies a combination of network events in which

the application is interested.

lpErrno A pointer to the error code.

Remarks This function is only applicable to the 32-bit SPI. The 16 bit Winsock2.DLL uses

WSPCallbackSelect() to implement the API function WSAAsyncSelect().

This function is used to request that the service provider should send a message to the

window hWnd whenever it detects any of the network events specified by the lEvent

parameter. The message which should be sent is specified by the wMsg parameter. The

socket for which notification is required is identified by s.

This function automatically sets socket s to non-blocking mode, regardless of the value of

lEvent. See WSPIoctlSocket() about how to set the socket back to blocking mode.

The lEvent parameter is constructed by or'ing any of the values specified in the following

list.

Value Meaning

FD_READ Want to receive notification of readiness for reading

FD_WRITE Want to receive notification of readiness for writing

FD_OOB Want to receive notification of the arrival of out-of-band

data

FD_ACCEPT Want to receive notification of incoming connections

FD_CONNECT Want to receive notification of completed connection

FD_CLOSE Want to receive notification of socket closure

FD_QOS Want to receive notification of socket Quality of Service

(QOS) changes

FD_GROUP_QOS Want to receive notification of socket group Quality of

Service (QOS) changes

Issuing a WSPAsyncSelect32() for a socket cancels any previous WSPAsyncSelect32()

for the same socket. For example, to receive notification for both reading and writing, the

44

Winsock DLL will call WSPAsyncSelect32() with both FD_READ and FD_WRITE, as

follows:

rc = WSPAsyncSelect32(s, hWnd, wMsg, FD_READ|FD_WRITE,
&error);

It is not possible to specify different messages for different events. The following code

will not work; the second call will cancel the effects of the first, and only FD_WRITE

events will be reported with message wMsg2:

rc = WSPAsyncSelect32(s, hWnd, wMsg1, FD_READ, &error);
rc = WSPAsyncSelect32(s, hWnd, wMsg2, FD_WRITE, &error);

To cancel all notification − i.e., to indicate that the service provider should send no

further messages related to network events on the socket − lEvent should be set to zero.

rc = WSPAsyncSelect32(s, hWnd, 0, 0, &error);

Although in this instance WSPAsyncSelect32() immediately disables event message

posting for the socket, it is possible that messages may be waiting in the application's

message queue. The application must therefore be prepared to receive network event

messages even after cancellation. Closing a socket with WSPCloseSocket() also cancels

WSPAsyncSelect32() message sending, but the same caveat about messages in the queue

prior to the WSPCloseSocket() still applies.

Since a WSPAccept()'ed socket has the same properties as the listening socket used to

accept it, any WSPAsyncSelect32() events set for the listening socket apply to the

accepted socket. For example, if a listening socket has WSPAsyncSelect32() events

FD_ACCEPT, FD_READ, and FD_WRITE, then any socket accepted on that listening

socket will also have FD_ACCEPT, FD_READ, and FD_WRITE events with the same

wMsg value used for messages. If a different wMsg or events are desired, the application

should call WSPAsyncSelect32(), passing the accepted socket and the desired new

information.1

When one of the nominated network events occurs on the specified socket s, the

application's window hWnd receives message wMsg. The wParam argument identifies the

socket on which a network event has occurred. The low word of lParam specifies the

network event that has occurred. The high word of lParam contains any error code. The

error code be any error as defined in Winsock2.h.

The error and event codes may be extracted from the lParam using the macros

WSAGETSELECTERROR and WSAGETSELECTEVENT, defined in Winsock2.h as:

#define WSAGETSELECTERROR(lParam) HIWORD(lParam)
#define WSAGETSELECTEVENT(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the

application.

1Note that there is a timing window between the accept() call and the call to WSAAsyncSelect() to change

the events or wMsg. An application which desires a different wMsg for the listening and accept()'ed

sockets should ask for only FD_ACCEPT events on the listening socket, then set appropriate events after

the accept(). Since FD_ACCEPT is never sent for a connected socket and FD_READ, FD_WRITE,

FD_OOB, and FD_CLOSE are never sent for listening sockets, this will not impose difficulties.

45

The possible network event codes which may be returned are as follows:

Value Meaning

FD_READ Socket s ready for reading

FD_WRITE Socket s ready for writing

FD_OOB Out-of-band data ready for reading on socket s.

FD_ACCEPT Socket s ready for accepting a new incoming connection

FD_CONNECT Connection initiated on socket s completed

FD_CLOSE Connection identified by socket s has been closed

FD_QOS Quality of Service associated with socket s has changed.

FD_GROUP_QOS Quality of Service associated with the socket group to

which s belongs has changed.

Return Value The return value is 0 if the application's declaration of interest in the network event set

was successful. Otherwise the value SOCKET_ERROR is returned, and a specific error

code is available in lpErrno.

Comments Although WSPAsyncSelect32() can be called with interest in multiple events, the

application window will receive a single message for each network event.

As in the case of the WSPSelect() function, WSPAsyncSelect32() will frequently be

used to determine when a data transfer operation (WSPSend() or WSPRecv()) can be

issued with the expectation of immediate success. Nevertheless, a robust application must

be prepared for the possibility that it may receive a message and issue a Winsock2 call

which returns WSAEWOULDBLOCK immediately. For example, the following sequence

of events is possible:

(i) data arrives on socket s; Winsock2 posts WSPAsyncSelect32()

message

(ii) application processes some other message

(iii) while processing, application issues an WSPIoctlSocket(s,

FIONREAD...) and notices that there is data ready to be read

(iv) application issues a WSPRecv(s,...) to read the data

(v) application loops to process next message, eventually reaching the

WSPAsyncSelect32() message indicating that data is ready to read

(vi) application issues WSPRecv(s,...), which fails with the error

WSAEWOULDBLOCK.

Other sequences are possible.

The Winsock DLL will not continually flood an application with messages for a particular

network event. Having successfully posted notification of a particular event to an

application window, no further message(s) for that network event will be posted to the

application window until the application makes the function call which implicitly

reenables notification of that network event.

Event Re-enabling function

FD_READ WSPRecv() or WSPRecvFrom()

FD_WRITE WSPSend() or WSPSendTo()

FD_OOB WSPRecv()

FD_ACCEPT WSPAccept() unless the error code returned is

WSATRY_AGAIN indicating that the condition function

returned CF_DEFER

46

FD_CONNECT NONE

FD_CLOSE NONE

FD_QOS WSPGetSockOpt() with option SO_FLOWSPEC

FD_GROUP_QOS WSPGetSockOpt() with option SO_GROUP_FLOWSPEC

Any call to the reenabling routine, even one which fails, results in reenabling of message

posting for the relevant event.

For FD_READ, FD_OOB, FD_ACCEPT, FD_QOS and FD_GROUP_QOS events,

message posting is "level-triggered." This means that if the reenabling routine is called

and the relevant event is still valid after the call, a WSPAsyncSelect32() message is

posted to the application. This allows an application to be event-driven and not be

concerned with the amount of data that arrives at any one time. Consider the following

sequence:

(i) network transport stack receives 100 bytes of data on socket s and

causes Winsock2 to post an FD_READ message.

(ii) The application issues WSPRecv(s, buffptr, 50, 0) to read 50 bytes.

(iii) another FD_READ message is posted since there is still data to be read.

With these semantics, an application need not read all available data in response to an

FD_READ message--a single WSPRecv() in response to each FD_READ message is

appropriate. If an application issues multiple WSPRecv() calls in response to a single

FD_READ, it may receive multiple FD_READ messages. Such an application may wish

to disable FD_READ messages before starting the WSPRecv() calls by calling

WSPAsyncSelect32() with the FD_READ event not set.

If an event has already happened when the application calls WSPAsyncSelect32() or

when the reenabling function is called, then a message is posted as appropriate. All the

events have persistence beyond the occurrence of their respective events. For example,

consider the following sequence: 1) an application calls WSPListen(), 2) a connect

request is received but not yet accepted, 3) the application calls WSPAsyncSelect32()

specifying that it wants to receive FD_ACCEPT messages for the socket. Due to the

persistence of events, Winsock2 posts an FD_ACCEPT message immediately.

The FD_WRITE event is handled slightly differently. An FD_WRITE message is posted

when a socket is first connected with WSPConnect() or accepted with WSPAccept(),

and then after a WSPSend() or WSPSendTo() fails with WSAEWOULDBLOCK and

buffer space becomes available. Therefore, an application can assume that sends are

possible starting from the first FD_WRITE message and lasting until a send returns

WSAEWOULDBLOCK. After such a failure the application will be notified that sends

are again possible with an FD_WRITE message.

The FD_OOB event is used only when a socket is configured to receive out-of-band data

separately. If the socket is configured to receive out-of-band data in-line, the out-of-band

(expedited) data is treated as normal data and the application should register an interest

in, and will receive, FD_READ events, not FD_OOB events. An application may set or

inspect the way in which out-of-band data is to be handled by using WSPSetSockOpt()

or WSPGetSockOpt() for the SO_OOBINLINE option.

The error code in an FD_CLOSE message indicates whether the socket close was graceful

or abortive. If the error code is 0, then the close was graceful; if the error code is

WSAECONNRESET, then the socket's virtual circuit was reset. This only applies to

connection-oriented sockets such as SOCK_STREAM.

47

The FD_CLOSE message is posted when a close indication is received for the virtual

circuit corresponding to the socket. In TCP terms, this means that the FD_CLOSE is

posted when the connection goes into the FIN WAIT or CLOSE WAIT states. This

results from the remote end performing a WSPShutdown() on the send side or a

WSPCloseSocket().

Please note your application will receive ONLY an FD_CLOSE message to indicate

closure of a virtual circuit, and only when all the received data has been read if this is a

graceful close. It will NOT receive an FD_READ message to indicate this condition.

The FD_QOS or FD_GROUP_QOS message is posted when any field in the flow spec

associated with socket s or the socket group that s belongs to has changed, respectively.

Applications might use WSPGetSockOpt() with option SO_FLOWSPEC or

SO_GROUP_FLOWSPEC to get the current QOS for socket s or for the socket group s

belongs to, respectively.

Error Codes WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was

invalid, or the specified socket is in an invalid state.

WSAEINPROGRESS A blocking Winsock2 call is in progress, or the

service provider is still processing a callback function

(see section ???).

WSAENOTSOCK The descriptor is not a socket.

Additional error codes may be set when an application window receives a message. This

error code is extracted from the lParam in the reply message using the

WSAGETSELECTERROR macro. Possible error codes for each network event are:

Event: FD_CONNECT

Error Code Meaning

WSAEADDRINUSE The specified address is already in use.

WSAEADDRNOTAVAIL The specified address is not available from the local

machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with

this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAENETUNREACH The network can't be reached from this host at this

time.

WSAENOBUFS No buffer space is available. The socket cannot be

connected.

WSAETIMEDOUT Attempt to connect timed out without establishing a

connection

Event: FD_CLOSE

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

48

WSAECONNRESET The connection was reset by the remote side.

WSAECONNABORTED The connection was aborted due to timeout or other

failure.

Event: FD_READ

Event: FD_WRITE

Event: FD_OOB

Event: FD_ACCEPT

Event: FD_QOS

Event: FD_GROUP_QOS

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

See Also WSPSelect()

49

3.1.13 WSPCallbackSelect16()

Description Request event notification for a socket via the specified callback function.

 #include <ws2spi.h>

 int WSPAPI WSPCallbackSelect16 (SOCKET s, LPSELECTPROC lpfnCallback,

DWORD dwCallbackData, long lEvent, int FAR * lpErrno);

s A descriptor identifying the socket for which event notification is

required.

lpfnCallback The procedure instance address of the callback function to be invoked

by Winsock service providers whenever a registered network event

happens.

dwCallbackData The callback data which is passed back to the application as a

parameter to the callback function. This object is not interpreted by the

Winsock service provider.

lEvent A bitmask which specifies a combination of network events in which

the Winsock DLL is interested.

lpErrno A pointer to the error code.

Remarks This function is only applicable to the 16-bit SPI. The 16 bit Winsock2.DLL uses this

function to implement the select(), WSAAsyncSelect(), and WSPEventSelect() API

functions.

This function enables the function-based callback mechanism for the specified socket.

The callback function will be invoked whenever the service provider detects any of the

network events specified by the lEvent parameter. The socket for which notification is

required is identified by s. The value of dwCallbackData will be passed back to the caller

as a parameter to the callback function.

The prototype of the callback function is as follows:

VOID WSACALLBACK CallbackFunc(SOCKET s, long lEvent, int

ErrorCode, DWORD dwCallbackData);

CallbackFunc is a placeholder for a Winsock DLL supplied function. The callback

function is written in such a way that it can be called by the provider from within interrupt

context2.WSPSend(), WSPSendTo(), WSPRecv(), WSPRecvFrom()

The lEvent parameter is constructed by or'ing any of the values specified in the following

list.

2 Because the callback is accessed at interrupt time, it must reside in a DLL, and its code segment must be

specified as FIXED in the module-definition file for the DLL. Any data that the callback accesses must be

in a FIXED data segment as well. The callback may not make any system calls except for PostMessage,

timeGetSystemTime, timeGetTime, timeSetEvent, timeKillEvent, midiOutShortMsg, midiOutLongMsg,

and OutputDebugStr.

50

Value Meaning

FD_READ Want to receive notification of readiness for reading

FD_WRITE Want to receive notification of readiness for writing

FD_OOB Want to receive notification of the arrival of out-of-band

data

FD_ACCEPT Want to receive notification of incoming connections

FD_CONNECT Want to receive notification of completed connection

FD_CLOSE Want to receive notification of socket closure

FD_QOS Want to receive notification of Quality of Service (QOS)

changes

FD_GROUP_QOS Want to receive notification of socket group Quality of

Service (QOS) changes

Issuing a WSPCallbackSelect16() for a socket cancels any previous

WSPCallbackSelect16() for the same socket. For example, to receive notification for

both reading and writing, the Winsock DLL must call WSPCallbackSelect16() with both

FD_READ and FD_WRITE, as follows:

rc = WSPCallbackSelect16(s, lpfnCallback, dwCallbackData,
FD_READ|FD_WRITE, lpErrno);

It is not possible to specify different callback data for different events. The following

code will not work; the second call will cancel the effects of the first, and only

FD_WRITE events will be reported with dwCallbackData2:

rc = WSPCallbackSelect16(s, lpfnCallback, dwCallbackData1,
FD_READ, lpErrno);

rc = WSPCallbackSelect16(s, lpfnCallback, dwCallbackData2,
FD_WRITE, lpErrno);

To cancel all notification − i.e., to indicate that the service provider should no long

invoke the callback function related to network events on the socket − lEvent should be

set to zero. In this case, lpfnCallback and dwCallbackData are ignored.

rc = WSPCallbackSelect16(s, lpfnCallback, dwCallbackData, 0,
lpErrno);

Closing a socket with WSPCloseSocket() also cancels WSPCallbackSelect16()

mechanism on the socket.

A WSPAccept()'ed socket has the same properties as the listening socket used to accept

it except that no network events and callback function are associated with it.

Winsock2.DLL will subsequently invoke WSPCallbackSelect16() to register interest in

the appropriate set of events for the WSPAccept()’ed socket3.

When one of the nominated network events occurs on the specified socket s, the callback

function will be invoked. The s argument identifies the socket on which a network event

has occurred. The lEvent argument specifies the event that has occurred. The ErrorCode

argument contains any error code. The error code can be any error as defined in ws2spi.h.

The possible network event codes which may be returned are as follows:

3 Note that there is a potential race condition here: WINSOCK 2..DLL may get FD_ACCEPT callback in

interrupt time before it returns from WSPAcceptEx(). Similar situations may happen to any of the

reenabling functions if they are not invoked from within callback context.

51

Value Meaning

FD_READ Socket s ready for reading

FD_WRITE Socket s ready for writing

FD_OOB Out-of-band data ready for reading on socket s.

FD_ACCEPT Socket s ready for accepting a new incoming connection

FD_CONNECT Connection initiated on socket s completed

FD_CLOSE Connection identified by socket s has been closed

FD_QOS Quality of Service associated with socket s or the socket

group to which s belongs has been changed.

FD_GROUP_QOS Quality of Service associated with the socket group to

which s belongs has changed.

Return Value The return value is 0 if the Winsock's declaration of interest in the network event set was

successful. Otherwise the value SOCKET_ERROR is returned, and a specific error

number is available in lpErrno.

Comments Although WSPCallbackSelect16() can be called with interest in multiple events, the

Winsock DLL will get a callback for each network event.

As in the case of WSPSelect(), WSPCallbackSelect16() is frequently used to determine

when a data transfer operation (WSPSend() or WSPRecv()) can be issued with the

expectation of immediate success.

The Winsock service provider will not continually flood the Winsock DLL with callbacks

for a particular network event on a given socket. Having successfully invoked a callback

indicating a particular event to the Winsock DLL, no further callback(s) for that network

event on the socket will be invoked to the Winsock DLL until the Winsock DLL makes

the function call which implicitly reenables notification of that network event, and returns

from the callback function4.

Event Re-enabling function

FD_READ WSPRecv() or WSPRecvFrom()

FD_WRITE WSPSend() or WSPSendTo()

FD_OOB WSPRecv()

FD_ACCEPT WSPAccept() unless the error code returned is

WSATRY_AGAIN indicating that the condition function

returned CF_DEFER

FD_CONNECT NONE

FD_CLOSE NONE

FD_QOS WSPGetSockOpt() with option SO_FLOWSPEC

FD_GROUP_QOS WSPGetSockOpt() with option SO_GROUP_FLOWSPEC

Any call to the reenabling routine, even one which fails (except in the case of

FD_ACCEPT when WSPAccept() returns with error code WSATRY_AGAIN), results in

reenabling of callback invocation for the relevant event.

4 However, due to the independence feature of sockets, WINSOCK2.DLL may get a callback for one socket

before the callback for another socket has returned. WINSOCK2.DLL may need to coordinate access to

any common memory area shared amongst these callback driven sockets.

52

For FD_READ, FD_OOB, FD_ACCEPT, FD_QOS and FD_GROUP_QOS events,

callback invocation is "level-triggered." This means that if the reenabling routine is called

and the relevant event is still valid after the call, an additional callback is invoked after

the previous callback returns. This allows applications using Winsock2.DLL to be event-

driven and not be concerned with the amount of data that arrives at any one time.

Consider the following sequence:

(i) The service provider receives 100 bytes of data on socket s and invokes

an FD_READ callback.

(ii) The Winsock2.DLL issues WSPRecv(s, buffptr, 50, 0, lpErrno) to

read 50 bytes.

(iii) The service provider invokes another FD_READ callback since there is

still data to be read.

With these semantics, the Winsock DLL need not read all available data in response to an

FD_READ callback--a single WSPRecv() in response to each FD_READ callback is

appropriate. If the Winsock DLL issues multiple WSPRecv() calls in response to a single

FD_READ, it may receive multiple FD_READ callbacks.

If an event has already happened when the Winsock DLL calls WSPCallbackSelect16()5

or when the reenabling function is called, then a callback is invoked as appropriate. All

the events have persistence beyond the occurrence of their respective events. For

example, if the Winsock DLL calls WSPListen(), a connect attempt is made, then the

Winsock DLL calls WSPCallbackSelect16() specifying that it wants to receive

FD_ACCEPT callbacks for the socket, the service provider invokes an FD_ACCEPT

callback immediately.

The FD_WRITE event is handled slightly differently. An FD_WRITE callback is invoked

when a socket is first connected with WSPConnect() or accepted with WSPAccept, and

then after a WSPSend() or WSPSendTo() fails with WSAEWOULDBLOCK and buffer

space becomes available. Therefore, the Winsock DLL can assume that sends are possible

starting from the first FD_WRITE callback and lasting until a send returns

WSAEWOULDBLOCK. After such a failure the Winsock DLL will be notified that

sends are again possible with an FD_WRITE callback.

The FD_OOB event is used only when a socket is configured to receive out-of-band data

separately. If the socket is configured to receive out-of-band data in-line, the out-of-band

(expedited) data is treated as normal data and the Winsock DLL should register an

interest in, and will receive, FD_READ events, not FD_OOB events. The Winsock DLL

may set or inspect the way in which out-of-band data is to be handled by using

WSPSetSockOpt() or WSPGetSockOpt() for the SO_OOBINLINE option.

The error code in an FD_CLOSE callback indicates whether the socket close was graceful

or abortive. If the error code is 0, then the close was graceful; if the error code is

WSAECONNRESET, then the socket's virtual circuit was reset. This only applies to

connection-oriented sockets such as SOCK_STREAM.

The FD_CLOSE callback is invoked when a close indication is received for the virtual

circuit corresponding to the socket. In TCP terms, this means that the FD_CLOSE

callback is invoked when the connection goes into the FIN WAIT or CLOSE WAIT

5 Note that there is a potential race condition here: WINSOCK2.DLL may get a callback in interrupt time

even before returning from WSPCallbackSelect(), in which case WINSOCK2.DLL should proceed with

the callback and assume that WSPCallbackSelect() will return 0.

53

states. This results from the remote end performing a WSPShutdown() on the send side

or a WSPCloseSocket().

Please note the Winsock DLL should receive ONLY an FD_CLOSE callback to indicate

closure of a virtual circuit. It should NOT receive an FD_READ callback to indicate this

condition.

The FD_QOS or FD_GROUP_QOS callback is invoked when any field in the flow spec

associated with socket s or the socket group to which s belongs has changed, respectively.

WSPGetSockOpt

Error Codes WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was

invalid, or the specified socket is in an invalid state.

WSAEINPROGRESS The function is invoked when a callback is in

progress.

WSAEFAULT The lpfnCallback is not part of the user address

space.

WSAENOTSOCK The descriptor is not a socket.

Additional error codes may be set when the Winsock DLL receives a callback. Possible

error codes for each network event are:

Event: FD_CONNECT

Error Code Meaning

WSAEADDRINUSE The specified address is already in use.

WSAEADDRNOTAVAIL The specified address is not available from the local

machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with

this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAENETUNREACH The network can't be reached from this host at this

time.

WSAENOBUFS No buffer space is available. The socket cannot be

connected.

WSAETIMEDOUT Attempt to connect timed out without establishing a

connection

Event: FD_CLOSE

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

WSAECONNRESET The connection was reset by the remote side.

WSAECONNABORTED The connection was aborted due to timeout or other

failure.

54

Event: FD_READ

Event: FD_WRITE

Event: FD_OOB

Event: FD_ACCEPT

Event: FD_QOS

Event: FD_GROUP_QOS

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

Notes For

Winsock Service

Providers When a socket is closed, the Winsock service provider should cancel any pending

callbacks to the Winsock DLL.

55

3.1.14 WSPCancelBlockingCall32()

Description Cancel a blocking call which is currently in progress.

 #include <ws2spi.h>

 int WSPAPI WSPCancelBlockingCall32 (int FAR * lpErrno);

lpErrno A pointer to the error code.

Remarks This function is only applicable to the 32-bit SPI.

This function cancels any outstanding blocking operation for the current thread. It is

normally used in two situations:

1. An application is processing a message which has been received while a

blocking call is in progress. In this case, WSPIsBlocking32() will be TRUE.

2. A blocking call is in progress, and Winsock has called back to the applications

“blocking hook” function (as established by WSPSetBlockingHook32()).

In each case, the original blocking call will terminate as soon as possible with the error

WSAEINTR. (In (1), the termination will not take place until Windows message

scheduling has caused control to revert to the blocking routine in Windows Sockets. In

(2), the blocking call will be terminated as soon as the blocking hook function completes.)

In the case of a blocking WSPConnect() operation, the Windows Sockets

implementation will terminate the blocking call as soon as possible, but it may not be

possible for the socket resources to be released until the connection has completed (and

then been reset) or timed out. This is likely to be noticeable only if the application

immediately tries to open a new socket (if no sockets are available), or to WSPConnect()

to the same peer.

Cancelling an WSPAccept() or a WSPSelect() call does not adversely impact the sockets

passed to these calls. Only the particular call fails; any operation that was legal before the

cancel is legal after the cancel, and the state of the socket is not affected in any way.

Cancelling any operation other than WSPAccept() and WSPSelect() can leave the socket

in an indeterminate state. If an application cancels a blocking operation on a socket, the

only operation that the application can depend on being able to perform on the socket is a

call to WSPCloseSocket(), although other operations may work on some service provider

implementations. If an application desires maximum portability, it must be careful not to

depend on performing operations after a cancel. An application may reset the connection

by setting the timeout on SO_LINGER to 0.

If a cancel operation compromised the integrity of a SOCK_STREAM's data stream in

any way, the Windows Sockets implementation must reset the connection and fail all

future operations other than WSPCloseSocket() with WSAECONNABORTED.

Return Value The return value is 0 if the blocking operation has been successfully cancelled. Otherwise

the value SOCKET_ERROR is returned, and a specific error number is available in

lpErrno.

56

Comments Note that it is possible that the network operation completes before the

WSPCancelBlockingCall32() is processed, for example if data is received into the user

buffer at interrupt time while the application is in a blocking hook. In this case, the

blocking operation will return successfully as if WSPCancelBlockingCall32() had never

been called. Note that the WSPCancelBlockingCall32() still succeeds in this case; the

only way to know with certainty that an operation was actually canceled is to check for a

return code of WSAEINTR from the blocking call.

Error Codes WSANOTINITIALISED A successful WSPStartup() must occur before using

this SPI.

WSAENETDOWN The Windows Sockets implementation has detected

that the network subsystem has failed.

WSAEINVAL Indicates that there is no outstanding blocking call.

See Also WSPIsBlocking32(), WSPSetBlockingHook32(), WSPUnhookBlockingHook32()

57

3.1.15 WSPCleanup()

Description Terminate use of the Winsock service provider.

 #include <ws2spi.h>

 int WSPAPI WSPCleanup (LPCLEANUPPROC lpfnCallback, DWORD

dwCallbackData, int FAR * lpErrno);

lpfnCallback The address of the callback function to be invoked by the service

provider when the cleanup operation completed.

dwCallbackData The callback data passed back to the Winsock DLL along with the

callback. This object is not interpreted by the Winsock service provider.

lpErrno A pointer to the error code.

Remarks The Winsock DLL is required to perform a (successful) WSPStartup() call before it can

use Winsock service providers. When it has completed the use of Winsock service

providers, the Winsock DLL must call WSPCleanup() to deregister itself from a

Winsock service provider and allow the service provider to free any resources allocated

on behalf of the Winsock DLL. Any open connection-oriented sockets that are connected

when WSPCleanup() is called are reset; sockets which have been closed with

WSPCloseSocket() but which still have pending data to be sent are not affected--the

pending data is still sent. When the cleanup operation is finished, the specified callback

function will be invoked. The value of dwCallbackData will be passed back to the

Winsock DLL along with the callback.

The prototype of the callback function is as follows:

VOID WSACALLBACK CallbackFunc(int ErrorCode, DWORD

dwCallbackData);

CallbackFunc is a placeholder for a Winsock DLL-supplied function. The callback

function is only called when the client thread that invoked this SPI is blocked in an

alertable wait. The callback data is passed back to the Winsock DLL along with the

callback. This object is not interpreted by the Winsock service provider.

Return Value The return value is 0 if the operation has been successfully initiated. Otherwise the value

SOCKET_ERROR is returned, and a specific error number is available in lpErrno.

Notes For

Winsock Service

Providers The Winsock DLL will make one and only one WSPCleanup() call to indicate

deregistration from a Winsock service provider. This function can thus, for example, be

utilized to free up allocated resources. {Yeah, but since each protocol is represented as a

separate service provider, it’s possible that the service provider’s DLL which implements

multiple protocols (e.g. TCP and UDP) could be called with WSPCleanup() multiple

times} {We have basically two choices here. We could either a) make separate

WSPStartup() and WSPCleanup() calls for each protocol/address_family/socket_type

triple supported by a given service provider DLL, or b) provide a single WSPStartup()

call when a service provider is first loaded, and a single WSPCleanup() when its time to

58

close shop. I tend to favor b), as it places the burden of responsibility on the Winsock

DLL, where it’s easier to control & get right (once).}

In a multithreaded environment, WSPCleanup() terminates Winsock operations for all

threads.

A Winsock service provider must ensure that WSPCleanup() leaves things in a state in

which the Winsock DLL can invoke WSPStartup() to re-establish Winsock usage.

Error Codes WSAENETDOWN The network subsystem has failed.

WSAEFAULT The lpfnCallback is not part of the user address

space.

See Also WSPStartup()

59

3.1.16 WSPConnect()

Description Establish a connection to a peer, create and/or join a socket group, and specify needed

quality of service based on the supplied flow spec.

 #include <ws2spi.h>

 int WSPAPI WSPConnect (SOCKET s, const struct sockaddr FAR * name, int

namelen, LPWSABUF lpCallerData, LPWSABUF lpCalleeData, GROUP g, LPQOS

lpSFlowspec, LPQOS lpGFlowspec, int FAR * lpErrno);

s A descriptor identifying an unconnected socket.

name The name of the peer to which the socket is to be connected.

 namelen The length of the name.

lpCallerData A pointer to the user data that is to be transferred to the peer during

connection establishment.

lpCalleeData A pointer to the user data that is to be transferred back from the peer

during connection establishment.

g The identifier of the socket group.

lpSFlowspec A pointer to the flow specs for socket s, one for each direction, if s is a

DSTREAM type socket. Otherwise, this parameter is ignored.

lpGFlowspec A pointer to the flow specs for the socket group to be created, one for

each direction, if the value of parameter g is

SG_CONSTRAINED_GROUP. Otherwise, this parameter is ignored.

lpErrno A pointer to the error code.

Remarks This function is used to create a connection to the specified destination, and to perform a

number of other ancillary operations that occur at connect time as well. For connection-

oriented sockets (e.g., type SOCK_STREAM), an active connection is initiated to the

foreign host using name (an address in the name space of the socket; for a detailed

description, please see WSPBind()). When this call completes successfully, the socket is

ready to send/receive data.

For a connectionless socket (e.g., type SOCK_UNREL_DGRAM), the operation

performed by WSPConnect() is merely to establish a default destination address which

will be used on subsequent WSPSend() and WSPRecv() calls. Exchange of user to user

data and QOS specification are not possible and the corresponding parameters will be

ignored.

If the socket, s, is unbound, unique values are assigned to the local association by the

system, and the socket is marked as bound. Note that if the address field of the name

structure is all zeroes, WSPConnect() will return the error WSAEADDRNOTAVAIL.

60

The Winsock DLL is responsible for allocating any memory space pointed to directly or

indirectly by any of the parameters it specified. LPWSABUF and LPQOS are defined in

ws2spi.h as follows:

typedef struct _WSABUF {
int len; // the length of the buffer
char FAR * buf; // the pointer to the buffer

} WSABUF, FAR * LPWSABUF;

typedef enum

{

GuaranteedService,

BestEffortService

} GUARANTEE;

typedef struct _flowparams

{

int64 AverageBandwidth;// In Bytes/sec

 int64 PeakBandwidth; // In Bytes/sec

 int64 BurstLength; // In microseconds

int64 Latency; // In microseconds

int64 DelayVariation; // In microseconds

GUARANTEE levelOfGuarantee;// Guaranteed or

// Best Effort

int32 CostOfCall; // Reserved for future

// use, must be set to 0

int32 ProviderId; // Provider Identifier

int32 SizePSP; // Length of provider

// specific parameters

 UCHAR ProviderSpecificParams[1];// provider specific

// parameters

} FLOWPARAMS;

typedef struct _QualityOfService

{

 FLOWPARAMS ForwardFP; // Caller(Initiator) to callee

 FLOWPARAMS BackwardFP; // Callee to caller

} QOS, FAR * LPQOS;

The lpCallerData is a value parameter which contains any user data that is to be sent

along with the connection request. If lpCallerData is NULL, no user data will be passed

to the peer. The lpCalleeData is a result parameter which will contain any user data

passed back from the peer as part of the connection establishment. If lpCalleeData->len

is 0, no user data has been passed back. The lpCalleeData information will be valid when

the connection operation is complete, i.e., after the FD_CONNECT notification has

occurred. If lpCalleeData is NULL, no user data will be passed back. The exact format of

the user data is specific to the address family to which the socket belongs.

Parameter g is used to indicate the appropriate actions on socket groups:

if g is an existing socket group id, add s to this group, provided all the

requirements set by this group are met; or

if g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket

group and have s as the first member; or

if g = SG_CONSTRAINED_GROUP, create a constrained socket group and

have s as the first member; or

61

if g = NULL, no operation is performed, and is equivalent to connect().

For unconstrained group, any set of sockets may be grouped together as long as they are

supported by a single Winsock service provider and are connection-oriented. A

constrained socket group requires that connections on all grouped sockets be to the same

host. For newly created socket groups, the new group id can be retrieved by using

WSPGetSockOpt() with option SO_GROUP_ID, if this operation completes

successfully.

lpSFlowspec specifies two blocks of memory containing the flow specs for socket s, one

for each direction. . The forward QOS or backward QOS values will be ignored as

appropriate for unidirectional sockets. . . The first part of each memory block is struct

FLOWSPEC, optionally followed by any service provider specific portion. Thus,

lpSFlowspec->Flen and lpSFlowspec->Blen must be larger than or equal to the size of

struct FLOWSPEC. A NULL value for lpSFlowspec indicates no application supplied

flow spec.

lpGFlowspec specifies two blocks of memory containing the flow specs for the socket

group to be created, one for each direction, provided that the value of parameter g is

SG_CONSTRAINED_GROUP. Otherwise, these values are ignored. The first part of

each memory block is struct FLOWSPEC, optionally followed by any service provider

specific portion. Thus, lpGFlowspec->Flen and lpGFlowspec->Blen must be larger than

or equal to the size of struct FLOWSPEC. A NULL value for lpGFlowspec indicates no

application supplied flow spec.

Comments When connected sockets break (i.e. become closed for whatever reason), they should be

discarded and recreated. It is safest to assume that when things go awry for any reason on

a connected socket, the Winsock DLL must discard and recreate the needed sockets in

order to return to a stable point.

Return Value If no error occurs, WSPConnect() returns 0. Otherwise, it returns SOCKET_ERROR,

and a specific error code is available in lpErrno.

Error Codes The following errors may occur at the time of the function call, and indicate that the

connect operation could not be initiated.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The specified address is already in use.

WSAEINPROGRESS The function is invoked when a callback is in

progress.

WSAEADDRNOTAVAIL The specified address is not available from the local

machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with

this socket.

WSAEDESTADDREQ A destination address is required.

WSAEFAULT The namelen argument is incorrect, the buffer length

for lpCalleeData, lpSFlowspec, and lpGFlowspec are

too small, or the buffer length for lpCallerData is too

large.

62

WSAEINVAL The parameter g specified in the condition function is

not a valid value, or the parameter s is a listening

socket.

WSAEISCONN The socket is already connected.

WSAEMFILE No more socket descriptors are available.

WSAENETUNREACH The network can't be reached from this host at this

time.

WSAENOBUFS No buffer space is available. The socket cannot be

connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEPROTONOSUPPORT The lpCallerData augment is not supported by the

service provider.

The following error codes may be returned by WSPEnumNetworkEvents() after the

connect has completed.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The specified address is already in use.

WSAEADDRNOTAVAIL The specified address is not available from the local

machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with

this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAENETUNREACH The network can't be reached from this host at this

time.

WSAENOBUFS No buffer space is available. The socket cannot be

connected.

WSAEOPNOTSUPP The flow specs specified in lpSFlowspec and

lpGFlowspec cannot be satisfied.

WSAETIMEDOUT Attempt to connect timed out without establishing a

connection

See Also WSPAccept(), WSPBind(), WSPGetSockName(), WSPGetSockOpt(), WSPsocket(),

WSPSelect(), WSPEventSelect(), WSPEnumNetworkEvents().

63

3.1.17 WSPEnumNetworkEvents()

Description Discover occurrences of network events for the indicated socket.

#include <ws2spi.h>

int WSPAPI WSPEnumNetworkEvents (SOCKET s, WSAEVENT hEventObject,

LPWSANETWORKEVENT lpNetworkEvents, LPINT lpiCount, int FAR * lpErrno);

s A descriptor identifying the socket.

hEventObject An optional handle identifying an associated event object to be reset.

lpNetworkEvents An array of WSANETWORKEVENT structs, each of which records an

occurred network event and the associated error code.

lpiCount The number of elements in the array. Upon returning, this parameter

indicates the actual number of elements in the array, or the minimum

number of elememts needed to retrieve all the network events if the

return value is WSAENOBUFS.

lpErrno A pointer to the error code.

Remarks This function is used to discover which network events have occurred for the indicated

socket since the last invocation of this function. It is intended for use in conjunction with

WSPEventSelect(), which associates an event object with one or more network events.

The socket’s internal record of network events is copied to lpNetworkEvents, whereafter

the internal network events record is cleared. If hEventObject is non-null, the indicated

event object is also reset. The Winsock2 DLL guarantees that the operations of copying

the network event record, clearing it and resetting any associated event object are atomic,

such that the next occurrence of a nominated network event will cause the event object to

become set.

The following error codes may be returned along with the respective network event:

Event: FD_CONNECT

Error Code Meaning

WSAEADDRINUSE The specified address is already in use.

WSAEADDRNOTAVAIL The specified address is not available from the local

machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with

this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAENETUNREACH The network can't be reached from this host at this

time.

WSAENOBUFS No buffer space is available. The socket cannot be

connected.

WSAETIMEDOUT Attempt to connect timed out without establishing a

connection

64

Event: FD_CLOSE

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

WSAECONNRESET The connection was reset by the remote side.

WSAECONNABORTED The connection was aborted due to timeout or other

failure.

Event: FD_READ

Event: FD_WRITE

Event: FD_OOB

Event: FD_ACCEPT

Event: FD_QOS

Event: FD_GROUP_QOS

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

Return Value The return value is 0 if the operation was successful. Otherwise the value

SOCKET_ERROR is returned, and a specific error number is available in lpErrno.

Error Codes WSANOTINITIALISED A successful WSPStartup() must occur before using

this SPI.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was

invalid

WSAEINPROGRESS A blocking Winsock call is in progress, or the service

provider is still processing a callback function (see

section ???).

WSAENOBUFS The supplied buffer is too small.

See Also WSPEventSelect()

65

3.1.18 WSPEventSelect()

Description Specify an event object to be associated with the supplied set of FD_XXX network

events.

 #include <ws2spi.h>

int WSPAPI WSPEventSelect (SOCKET s, WSAEVENT hEventObject, long

lNetworkEvents, int FAR * lpErrno);

s A descriptor identifying the socket.

hEventObject A handle identifying the event object to be associated with the supplied

set of FD_XXX network events.

lNetworkEvents A bitmask which specifies the combination of FD_XXX network events

in which the application has interest.

lpErrno A pointer to the error code.

Remarks This function is used to specify an event object, hEventObject, to be associated with the

selected FD_XXX network events, lNetworkEvents. The socket for which an event object

is specified is identified by s. The event object is set when any of the nominated network

events occur.

WSPEventSelect() operates very similarly to WSPAsyncSelect32(), the difference being

in the actions taken when a nominated network event occurs. Whereas

WSPAsyncSelect32() causes an application-specified Windows message to be posted,

WSPEventSelect() sets the associated event object and records the occurrence of this

event by setting the corresponding bit in an internal network event record. An application

can use WSAWaitForMultipleEvents() or WSAGetOverlappedResult() to wait or poll

on the event object, and use WSAEnumNetworkEvents() to retrieve the contents of the

internal network event record and thus determine which of the nominated network events

have occurred.

This function automatically sets socket s to non-blocking mode, regardless of the value of

lNetworkEvents. See WSPIoctlSocket() about how to set the socket back to blocking

mode.

The lNetworkEvents parameter is constructed by or'ing any of the values specified in the

following list.

Value Meaning

FD_READ Want to receive notification of readiness for reading

FD_WRITE Want to receive notification of readiness for writing

FD_OOB Want to receive notification of the arrival of out-of-band

data

FD_ACCEPT Want to receive notification of incoming connections

FD_CONNECT Want to receive notification of completed connection

FD_CLOSE Want to receive notification of socket closure

FD_QOS Want to receive notification of socket Quality of Service

(QOS) changes

FD_GROUP_QOS Want to receive notification of socket group Quality of

Service (QOS) changes

66

Issuing a WSPEventSelect() for a socket cancels any previous WSPAsyncSelect32() or

WSPEventSelect() for the same socket and clears all bits in the internal network event

record. For example, to associate an event object with both reading and writing network

events, the application must call WSPEventSelect() with both FD_READ and

FD_WRITE, as follows:

rc = WSPEventSelect(s, hEventObject, FD_READ|FD_WRITE);

It is not possible to specify different event objects for different network events. The

following code will not work; the second call will cancel the effects of the first, and only

FD_WRITE network event will be associated with hEventObject2:

rc = WSPEventSelect(s, hEventObject1, FD_READ);
rc = WSPEventSelect(s, hEventObject2, FD_WRITE);

To cancel the association and selection of network events on a socket, lNetworkEvents

should be set to zero, in which case the hEventObject parameter will be ignored.

rc = WSPEventSelect(s, hEventObject, 0);

Closing a socket with WSPCloseSocket() also cancels the association and selection of

network events specified in WSPEventSelect() for the socket. The application, however,

still needs to call WSACloseEvent() to explicitly close the event object and free any

resources.

Since a WSAAccept()'ed socket has the same properties as the listening socket used to

accept it, any WSPEventSelect() association and network events selection set for the

listening socket apply to the accepted socket. For example, if a listening socket has

WSPEventSelect() association of hEventOject with FD_ACCEPT, FD_READ, and

FD_WRITE, then any socket accepted on that listening socket will also have

FD_ACCEPT, FD_READ, and FD_WRITE network events associated with the same

hEventObject. If a different hEventObject or network events are desired, the application

should call WSPEventSelect(), passing the accepted socket and the desired new

information.6

Return Value The return value is 0 if the application's specification of the network events and the

associated event object was successful. Otherwise the value SOCKET_ERROR is

returned, and a specific error number is available in lpErrno.

Comments As in the case of the WSPSelect() and WSPAsyncSelect32() functions,

WSPEventSelect() will frequently be used to determine when a data transfer operation

(WSPSend() or WSPRecv()) can be issued with the expectation of immediate success.

Nevertheless, a robust application must be prepared for the possibility that the event

object is set and it issues a Winsock call which returns WSAEWOULDBLOCK

immediately. For example, the following sequence of operations is possible:

6Note that there is a timing window between the accept() call and the call to WSAEventSelect() to change

the network events or hEventObject. An application which desires a different hEventObject for the

listening and accept()'ed sockets should ask for only FD_ACCEPT network event on the listening socket,

then set appropriate network events after the accept(). Since FD_ACCEPT never happens to a connected

socket and FD_READ, FD_WRITE, FD_OOB, and FD_CLOSE never happen to listening sockets, this will

not impose difficulties.

67

(i) data arrives on socket s; Winsock sets the WSPEventSelect event

object

(ii) application does some other processing

(iii) while processing, application issues an WSPIoctlSocket(s,

FIONREAD...) and notices that there is data ready to be read

(iv) application issues a WSPRecv(s,...) to read the data

(v) application eventually waits on event object specified in

WSPEventSelect, which returns immediately indicating that data is

ready to read

(vi) application issues WSPRecv(s,...), which fails with the error

WSAEWOULDBLOCK.

Other sequences are possible.

Having successfully recorded the occurrence of the network event (by setting the

corresponding bit in the internal network event record) and signaled the associated event

object, no further actions are taken for that network event until the application makes the

function call which implicitly reenables the setting of that network event and signaling of

the associated event object.

Network Event Re-enabling function

FD_READ WSPRecv() or WSPRecvFrom()

FD_WRITE WSPSend() or WSPSendTo()

FD_OOB WSPRecv()

FD_ACCEPT WSPAccept() unless the error code returned is

WSATRY_AGAIN indicating that the condition function

returned CF_DEFER

FD_CONNECT NONE

FD_CLOSE NONE

FD_QOS WSPGetSockOpt() with option SO_FLOWSPEC

FD_GROUP_QOS WSPGetSockOpt() with option SO_GROUP_FLOWSPEC

Any call to the reenabling routine, even one which fails, results in reenabling of recording

and setting for the relevant network event and event object, respectively.

For FD_READ, FD_OOB, FD_ACCEPT, FD_QOS and FD_GROUP_QOS network

events, network event recording and event object setting are "level-triggered." This means

that if the reenabling routine is called and the relevant network condition is still valid after

the call, the network event is recorded and the associated event object is set . This allows

an application to be event-driven and not be concerned with the amount of data that

arrives at any one time. Consider the following sequence:

(i) transport provider receives 100 bytes of data on socket s and causes

Winsock2 DLL to record the FD_READ network event and set the

associated event object.

(ii) The application issues WSPRecv(s, buffptr, 50, 0) to read 50 bytes.

(iii) The transport provider causes WINSOCK DLL to record the

FD_READ network event and sets the associated event object again

since there is still data to be read.

With these semantics, an application need not read all available data in response to an

FD_READ network event --a single WSPRecv() in response to each FD_READ network

event is appropriate.

68

If a network event has already happened when the application calls WSPEventSelect() or

when the reenabling function is called, then a network event is recorded and the

associated event object is set as appropriate. All the network events have persistence

beyond the occurrence of their respective events. For example, consider the following

sequence: 1) an application calls WSPListen(), 2) a connect request is received but not

yet accepted, 3) the application calls WSPEventSelect() specifying that it is interested in

the FD_ACCEPT network event for the socket. Due to the persistence of network events,

Winsock records the FD_ACCEPT network event and sets the associated event object

immediately.

The FD_WRITE network event is handled slightly differently. An FD_WRITE network

event is recorded when a socket is first connected with WSPConnect() or accepted with

WSPAccept(), and then after a WSPSend() or WSPSendTo() fails with

WSAEWOULDBLOCK and buffer space becomes available. Therefore, an application

can assume that sends are possible starting from the first FD_WRITE network event

setting and lasting until a send returns WSAEWOULDBLOCK. After such a failure the

application will find out that sends are again possible when an FD_WRITE network event

is recorded and the associated event object is set .

The FD_OOB network event is used only when a socket is configured to receive out-of-

band data separately. If the socket is configured to receive out-of-band data in-line, the

out-of-band (expedited) data is treated as normal data and the application should register

an interest in, and will get, FD_READ network event, not FD_OOB network event. An

application may set or inspect the way in which out-of-band data is to be handled by using

WSPSetSockOpt() or WSPGetSockOpt() for the SO_OOBINLINE option.

The error code in an FD_CLOSE network event indicates whether the socket close was

graceful or abortive. If the error code is 0, then the close was graceful; if the error code is

WSAECONNRESET, then the socket's virtual circuit was reset. This only applies to

connection-oriented sockets such as SOCK_STREAM.

The FD_CLOSE network event is recorded when a close indication is received for the

virtual circuit corresponding to the socket. In TCP terms, this means that the FD_CLOSE

is recorded when the connection goes into the FIN WAIT or CLOSE WAIT states. This

results from the remote end performing a WSPShutdown() on the send side or a

WSPCloseSocket().

Please note Winsock will record ONLY an FD_CLOSE network event to indicate closure

of a virtual circuit. It will NOT record an FD_READ network event to indicate this

condition.

The FD_QOS or FD_GROUP_QOS network event is recorded when any field in the flow

spec associated with socket s or the socket group that s belongs to has changed,

respectively. Applications should use WSPGetSockOpt() with option SO_FLOWSPEC

or SO_GROUP_FLOWSPEC to get the current QOS for socket s or for the socket group

s belongs to, respectively.

Error Codes WSANOTINITIALISED A successful WSPStartup() must occur before using

this SPI.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was

invalid, or the specified socket is in an invalid state.

69

WSAEINPROGRESS A blocking Winsock call is in progress, or the service

provider is still processing a callback function (see

section ???).

WSAENOTSOCK The descriptor is not a socket.

See Also WSPEnumNetworkEvents()

70

3.1.19 WSPIsBlocking32()

Description Determine if a blocking call is in progress.

 #include <ws2spi.h>

 BOOL WSPAPI WSPIsBlocking32 (VOID);

Remarks This function is only applicable to the 32-bit SPI.

This function allows the Winsock DLL to determine if it is executing while waiting for a

previous blocking call to complete.

Return Value The return value is TRUE if there is an outstanding blocking function awaiting

completion. Otherwise, it is FALSE.

See Also WSPCancelBlockingCall32(), WSPSetBlockingHook32(),

WSPUnhookBlockingHook32()

71

3.1.20 WSPRecv()

Description Receive data from a socket. {warning! Since both the recv() and WSARecv() API

functions map to this function the description needs to be more generic with respect to

overlapped I/O This also applies to WSPRecvFrom, WSPSend, WSPSendTo}

 #include <ws2spi.h>

 int WSPAPI WSPRecv (SOCKET s, LPVOID lpBuffer, DWORD

nNumberOfBytesToRecv, LPDWORD lpNumberOfBytesRecvd, LPINT lpFlags,

LPWSAOVERLAPPED lpOverlapped,

LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine, int FAR

* lpErrno);

s A descriptor identifying a connected socket.

lpBuffer A pointer to the buffer for the incoming data.

nNumberOfBytesToRecv The number of bytes to receive from the network.

lpNumberOfBytesRecvd A pointer to the number of bytes received by this call.

lpFlags A pointer to flags.

lpOverlapped A pointer to a WSAOVERLAPPED structure.

lpCompletionRoutine A pointer to the completion routine called when the receive

operation has been completed.

lpErrno A pointer to the error code.

Remarks This function is used on a connection-oriented socket specified by s to post a buffer into

which incoming data will be placed as it becomes available. It can also be used on

connectionless sockets which have a stipulated default peer address established via the

WSPConnect() function.

For non-overlapped socket, this function behaves like the standard recv() API with

identical blocking semantics and the lpOverlapped and lpCompletionRoutine parameters

are ignored. The completion status of this SPI is the final completion status of the receive

operation.

For overlapped sockets, the final completion status is retrieved via the

WSAGetOverlappedResult() API.

For byte stream style sockets (e.g., type SOCK_STREAM), incoming data is placed into

the buffer until the buffer is filled. For message-oriented sockets (e.g., type

SOCK_DGRAM), an incoming message is placed into the supplied buffer, up to the size

of the buffer supplied. If the message is larger than the buffer supplied, the buffer is filled

with the first part of the message, the excess data is lost, and WSPRecv() indicates the

error WSAEMSGSIZE.

72

If the socket is connection-oriented and the remote side has shut down the connection

gracefully, WSPRecv() will complete immediately indicating zero bytes received. If the

connection has been reset, a WSPRecv() will fail with the error WSAECONNRESET.

This function may be called from within the completion routine of a previous

WSPRecv(), WSPRecvFrom(), WSPSend() or WSPSendTo() function.

When called with an overlapped socket, the lpOverlapped parameter much be valid for

the duration of the overlapped operation. The WSAOVERLAPPED structure has the

following form:

typedef struct _WSAOVERLAPPED {
DWORD Internal; // reserved
DWORD InternalHigh; // reserved
DWORD Offset; // ignored
DWORD OffsetHigh; // ignored
WSAEVENT hEvent;

} WSAOVERLAPPED, LPWSAOVERLAPPED;

The lpCompletionRoutine must be non-NULL and the hEvent field is used to pass context

information to the completion routine.

The prototype of the completion routine is as follows:

VOID CALLBACK CompletionRoutine(DWORD dwError,

DWORD cbTransferred, LPWSAOVERLAPPED lpOverlapped);

CompletionRoutine is a placeholder for an application-defined or library-defined

function. dwError specifies the completion status for the overlapped operation as

indicated by lpOverlapped. cbTransferred specifies the number of bytes received. This

function does not return a value.

Returning from this function allows invocation of another pending completion routine for

this socket. The completion routines may be called in any order, not necessarily in the

same order the overlapped operations are completed. However, the posted buffers are

guaranteed to be filled in the same order they are supplied

Upon the completion of the overlapped operation, the lpNumberOfBytesRecvd parameter

is filled with the number of bytes received, and, for message-oriented sockets, the

MSG_PARTIAL bit is set in the lpFlags parameter if a partial message is received. If a

complete message is received, MSG_PARTIAL is cleared in lpFlags.

Return Value If no error occurs, WSPRecv() returns 0. Otherwise, a value of SOCKET_ERROR is

returned, and a specific error code is available in lpErrno.

Error Codes WSANOTINITIALISED A successful WSPStartup() must occur before using

this SPI.

WSAENETDOWN The network subsystem has failed.

WSAENOTCONN The socket is not connected.

WSAENETRESET The connection must be reset because the service

provider dropped it.

73

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not

stream style such as type SOCK_STREAM, out-of-

band data is not supported in the communication

domain associated with this socket, or the socket is

unidirectional and supports only send operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to

WSPRecv() on a socket after WSPShutdown() has

been invoked with how set to SD_RECEIVE or

SD_BOTH.

WSAEWOULDBLOCK There are too many outstanding overlapped I/O

requests.

WSAEMSGSIZE The message was too large to fit into the specified

buffer and was truncated. Any trailing portion of the

message that did not fit into the buffer has been

discarded.

 {Does this make sense?}

WSAEINVAL The socket has not been bound with WSPBind(), or

the socket is not created with the overlapped flag.

WSAECONNABORTED The virtual circuit was aborted due to timeout or

other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

See Also WSPSocket()

74

3.1.21 WSPRecvFrom()

Description Receive a datagram and store the source address.

 #include <ws2spi.h>

int WSPAPI WSPRecvFrom (SOCKET s, LPVOID lpBuffer, DWORD

nNumberOfBytesToRecv, LPDWORD lpNumberOfBytesRecvd, LPINT lpFlags,

LPVOID lpFrom, LPINT lpFromlen, LPWSAOVERLAPPED lpOverlapped,

LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine, int FAR

* lpErrno);

s A descriptor identifying a socket.

lpBuffer A pointer to the buffer for the incoming data.

nNumberOfBytesToRecv The number of bytes to receive from the network.

lpNumberOfBytesRecvd A pointer to the number of bytes received by this call.

lpFlags A pointer to flags.

lpFrom An optional pointer to a buffer which will hold the source

address upon the completion of the overlapped operation.

lpFromlen An optional pointer to the size of the from buffer.

lpOverlapped A pointer to a WSAOVERLAPPED structure.

lpCompletionRoutine A pointer to the completion routine called when the receive

operation has been completed.

lpErrno A pointer to the error code.

Remarks This function is used to post a buffer into which incoming data will be placed as it

becomes available on a (possibly connected) socket. For connectionless socket types, the

address from which the data originated is copied to the buffer pointed by lpFrom. The

value pointed to by lpFromlen is initialized to the size of this buffer, and is modified on

return to indicate the actual size of the address stored there. The lpFrom and lpFromlen

parameters are ignored for connection-oriented sockets.

For non-overlapped socket, this function behaves like the standard recvfrom() API with

identical blocking semantics. The lpOverlapped and lpCompletionRoutine parameters are

ignored. The completion status of this SPI is the final completion status of the receive

operation.

For overlapped sockets, the final completion status is retrieved via the

WSAGetOverlappedResult() API.

For byte stream style sockets (e.g., type SOCK_STREAM), incoming data is placed into

the buffer until the buffer is filled. For message-oriented sockets, an incoming message is

placed into the supplied buffer, up to the size of the buffer supplied. If the message is

75

larger than the buffer supplied, the buffer is filled with the first part of the message, the

excess data is lost, and WSPRecvFrom() indicates the error code WSAEMSGSIZE.

If the socket is connection-oriented and the remote side has shut down the connection

gracefully, a WSPRecvFrom() will complete immediately with 0 bytes received. If the

connection has been reset WSPRecvFrom() will fail with the error WSAECONNRESET.

This function may be called from within the completion routine of a previous

WSPRecv(), WSPRecvFrom(), WSPSend() or WSPSendTo() function.

When called with an overlapped socket, the lpOverlapped parameter much be valid for

the duration of the overlapped operation. The WSAOVERLAPPED structure has the

following form:

typedef struct _WSAOVERLAPPED {
DWORD Internal; // reserved
DWORD InternalHigh; // reserved
DWORD Offset; // ignored
DWORD OffsetHigh; // ignored
WSAEVENT hEvent;

} WSAOVERLAPPED, LPWSAOVERLAPPED;

The lpCompletionRoutine must be non-NULL and the hEvent field is used to pass context

information to the completion routine.

The prototype of the completion routine is as follows:

VOID CALLBACK CompletionRoutine(DWORD dwError,

DWORD cbTransferred, LPWSAOVERLAPPED lpOverlapped);

CompletionRoutine is a placeholder for an application-defined or library-defined

function. dwError specifies the completion status for the overlapped operation as

indicated by lpOverlapped. cbTransferred specifies the number of bytes received. This

function does not return a value.

Returning from this function allows invocation of another pending completion routine for

this socket. The completion routines may be called in any order, not necessarily in the

same order the overlapped operations are completed. However, the posted buffers are

guaranteed to be filled in the same order they are supplied

Upon the completion of the overlapped operation, the lpNumberOfBytesRecvd parameter

is filled with the number of bytes received, and, for message-oriented sockets, the

MSG_PARTIAL bit is set in the lpFlags parameter if a partial message is received. If a

complete message is received, MSG_PARTIAL is cleared in lpFlags.

Return Value If no error occurs, WSPRecvFrom() returns 0. Otherwise, a value of SOCKET_ERROR

is returned, and a specific error code is available in lpErrno.

Error Codes WSANOTINITIALISED A successful WSPStartup() must occur before using

this SPI.

WSAENETDOWN The network subsystem has failed.

76

WSAEFAULT The lpFromlen argument was invalid: the lpFrom

buffer was too small to accommodate the peer

address.

WSAEINVAL The socket has not been bound with WSPBind(), or

the socket is not created with the overlapped flag.

WSAENETRESET The connection must be reset because the Winsock

provider dropped it.

WSAENOTCONN The socket is not connected (connection-oriented

sockets only).

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not

stream style such as type SOCK_STREAM, out-of-

band data is not supported in the communication

domain associated with this socket, or the socket is

unidirectional and supports only send operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to

WSPRecvFrom() on a socket after shutdown() has

been invoked with how set to SD_RECEIVE or

SD_BOTH.

WSAEWOULDBLOCK There are too many outstanding overlapped I/O

requests.

WSAEMSGSIZE The message was too large to fit into the specified

buffer and was truncated. Any trailing portion of the

message that did not fit into the buffer has been

discarded.

{Does this make sense?}

WSAECONNABORTED The virtual circuit was aborted due to timeout or

other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

See Also WSPSocket()

77

3.1.22 WSPSend()

Description Send data on a connected socket.

 #include <ws2spi.h>

int WSPAPI WSPSend (SOCKET s, LPVOID lpBuffer, DWORD

nNumberOfBytesToSend, LPDWORD lpNumberOfBytesSent, int nFlags,

LPWSAOVERLAPPED lpOverlapped,

LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine, int FAR

* lpErrno);

s A descriptor identifying a connected socket.

lpBuffer A pointer to the buffer for the outgoing data.

nNumberOfBytesToSend The number of bytes to send to the network.

lpNumberOfBytesSent A pointer to the number of bytes sent by this call.

iFlags Flags.

lpOverlapped A pointer to a WSAOVERLAPPED structure.

lpCompletionRoutine A pointer to the completion routine called when the send

operation has been completed.

lpErrno A pointer to the error code.

Remarks WSPSend() is used to write outgoing data on a connected socket. For message-oriented

sockets, it is an error to exceed the maximum packet size of the underlying transport,

which can be obtained by getting the value of socket option SO_MAX_DG_SIZE. If the

data is too long to pass atomically through the underlying protocol the error

WSAEMSGSIZE is returned, and no data is transmitted.

Note that the successful completion of a WSPSend() does not indicate that the data was

successfully delivered.

For non-overlapped socket, this function behaves like the standard send() API with

identical blocking semantics. The lpOverlapped and lpCompletionRoutine parameters are

ignored. The completion status of this SPI is the final completion status of the receive

operation.

For overlapped sockets, the final completion status is retrieved via the

WSAGetOverlappedResult() API.

This function may be called from within the completion routine of a previous

WSPRecv(), WSPRecvFrom(), WSPSend() or WSPSendTo() function.

When called with an overlapped socket, the lpOverlapped parameter much be valid for

the duration of the overlapped operation. The WSAOVERLAPPED structure has the

following form:

78

typedef struct _WSAOVERLAPPED {
DWORD Internal; // reserved
DWORD InternalHigh; // reserved
DWORD Offset; // ignored
DWORD OffsetHigh; // ignored
WSAEVENT hEvent;

} WSAOVERLAPPED, LPWSAOVERLAPPED;

The lpCompletionRoutine must be non-NULL and the hEvent field is used to pass context

information to the completion routine.

The prototype of the completion routine is as follows:

VOID CALLBACK CompletionRoutine(DWORD dwError,

DWORD cbTransferred, LPWSAOVERLAPPED lpOverlapped);

CompletionRoutine is a placeholder for an application-defined or library-defined

function. dwError specifies the completion status for the overlapped operation as

indicated by lpOverlapped. cbTransferred specifies the number of bytes received. This

function does not return a value.

Returning from this function allows invocation of another pending completion routine for

this socket. The completion routines may be called in any order, not necessarily in the

same order the overlapped operations are completed. However, the posted buffers are

guaranteed to be sent in the same order they are supplied

Flags may be used to influence the behavior of the function invocation beyond the

options specified for the associated socket. That is, the semantics of this function are

determined by the socket options and the flags parameter. The latter is constructed by or-

ing any of the following values:

Value Meaning

MSG_DONTROUTE

Specifies that the data should not be subject to routing. A Winsock

service provider may choose to ignore this flag; see also the discussion

of the SO_DONTROUTE option in section 2.8..

MSG_PARTIAL Specifies that lpBuffer only contains a partial message. Note that this

flag will be ignored by transports which do not support partial message

transmissions.

Upon the completion of the overlapped operation, the lpNumberOfBytesSent parameter is

filled with the number of bytes sent.

Return Value If no error occurs, WSPSend() returns 0. Otherwise, a value of SOCKET_ERROR is

returned, and a specific error code is available in lpErrno.

Error Codes WSANOTINITIALISED A successful WSPStartup() must occur before using

this SPI.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a broadcast address, but the

appropriate flag was not set.

79

WSAEFAULT The lpBuffer argument is not in a valid part of the

user address space.

WSAENETRESET The connection must be reset because the Winsock

provider dropped it.

WSAENOBUFS The Winsock provider reports a buffer deadlock.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not

stream style such as type SOCK_STREAM, out-of-

band data is not supported in the communication

domain associated with this socket, or the socket is

unidirectional and supports only receive operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to

WSPSend() on a socket after WSPShutdown() has

been invoked with how set to SD_SEND or

SD_BOTH.

WSAEWOULDBLOCK There are too many outstanding overlapped I/O

requests.

WSAEMSGSIZE The socket is message-oriented, and the message is

larger than the maximum supported by the underlying

transport.

WSAEINVAL The socket has not been bound with WSPBind(), or

the socket is not created with the overlapped flag.

WSAECONNABORTED The virtual circuit was aborted due to timeout or

other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

See Also WSPSocket()

80

3.1.23 WSPSendTo()

Description Send data to a specific destination using overlapped I/O.

 #include <ws2spi.h>

int WSPAPI WSPSendTo (SOCKET s, LPVOID lpBuffer, DWORD

nNumberOfBytesToSend, LPDWORD lpNumberOfBytesSent, int nFlags, LPVOID

lpTo, int nTolen, LPWSAOVERLAPPED lpOverlapped,

LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine, int FAR

* lpErrno);

s A descriptor identifying a socket.

lpBuffer A pointer to the buffer for the outgoing data.

nNumberOfBytesToSend The number of bytes to send to the network.

lpNumberOfBytesSent A pointer to the number of bytes sent by this call.

iFlags Flags.

lpTo An optional pointer to the address of the target socket.

iTolen The size of the address in lpTo.

lpOverlapped A pointer to a WSAOVERLAPPED structure.

lpCompletionRoutine A pointer to the completion routine called when the send

operation has been completed.

lpErrno A pointer to the error code.

Remarks WSPSendTo() is used to write outgoing data on a socket. For message-oriented sockets,

it is an error to exceed the maximum packet size of the underlying transport, which can be

obtained by getting the value of socket option SO_MAX_DG_SIZE. If the data is too

long to pass atomically through the underlying protocol the error WSAEMSGSIZE is

returned, and no data is transmitted.

Note that the successful completion of a WSPSendTo() does not indicate that the data

was successfully delivered.

For non-overlapped socket, this function behaves like the standard sendto() API with

identical blocking semantics. The lpOverlapped and lpCompletionRoutine parameters are

ignored. The completion status of this SPI is the final completion status of the receive

operation.

For overlapped sockets, the final completion status is retrieved via the

WSAGetOverlappedResult() API.

WSPSendTo() is normally used on a connectionless socket to send a datagram to a

specific peer socket identified by the lpTo parameter. On a connection-oriented socket,

81

the lpTo and iTolen parameters are ignored; in this case the WSPSendTo() is equivalent

to WSPSend().

This function may be called from within the completion routine of a previous

WSPRecv(), WSPRecvFrom(), WSPSend() or WSPSendTo() function.

When called with an overlapped socket, the lpOverlapped parameter much be valid for

the duration of the overlapped operation. The WSAOVERLAPPED structure has the

following form:

typedef struct _WSAOVERLAPPED {
DWORD Internal; // reserved
DWORD InternalHigh; // reserved
DWORD Offset; // ignored
DWORD OffsetHigh; // ignored
WSAEVENT hEvent;

} WSAOVERLAPPED, LPWSAOVERLAPPED;

The lpCompletionRoutine must be non-NULL and the hEvent field is used to pass context

information to the completion routine.

The prototype of the completion routine is as follows:

VOID CALLBACK CompletionRoutine(DWORD dwError,

DWORD cbTransferred, LPWSAOVERLAPPED lpOverlapped);

CompletionRoutine is a placeholder for an application-defined or library-defined

function. dwError specifies the completion status for the overlapped operation as

indicated by lpOverlapped. cbTransferred specifies the number of bytes received. This

function does not return a value.

Returning from this function allows invocation of another pending completion routine for

this socket. The completion routines may be called in any order, not necessarily in the

same order the overlapped operations are completed. However, the posted buffers are

guaranteed to be sent in the same order they are supplied

Flags may be used to influence the behavior of the function invocation beyond the

options specified for the associated socket. That is, the semantics of this function are

determined by the socket options and the flags parameter. The latter is constructed by or-

ing any of the following values:

Value Meaning

MSG_DONTROUTE

Specifies that the data should not be subject to routing. A WINSOCK

service provider may choose to ignore this flag; see also the discussion

of the SO_DONTROUTE option in section 2.8..

MSG_PARTIAL Specifies that lpBuffer only contains a partial message. Note that this

flag will be ignored by transports which do not support partial message

transmissions.

Upon the completion of the overlapped operation, the lpNumberOfBytesSent parameter is

filled with the number of bytes sent.

82

Return Value If no error occurs, WSPSendTo() returns 0. Otherwise, a value of SOCKET_ERROR is

returned, and a specific error code is available in lpErrno.

Error Codes WSANOTINITIALISED A successful WSPStartup() must occur before using

this SPI.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a broadcast address, but the

appropriate flag was not set.

WSAEFAULT The lpBuffer or lpTo parameters are not part of the

user address space, or the lpTo argument is too small.

WSAENETRESET The connection must be reset because the Winsock

provider dropped it.

WSAENOBUFS The Winsock provider reports a buffer deadlock.

WSAENOTCONN The socket is not connected (connection-oriented

sockets only)

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not

stream style such as type SOCK_STREAM, out-of-

band data is not supported in the communication

domain associated with this socket, or the socket is

unidirectional and supports only receive operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to

WSPSendTo() on a socket after WSPShutdown()

has been invoked with how set to SD_SEND or

SD_BOTH.

WSAEWOULDBLOCK There are too many outstanding overlapped I/O

requests.

WSAEMSGSIZE The socket is message-oriented, and the message is

larger than the maximum supported by the underlying

transport.

WSAEINVAL The socket has not been bound with WSPBind(), or

the socket is not created with the overlapped flag.

WSAECONNABORTED The virtual circuit was aborted due to timeout or

other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

WSAEADDRNOTAVAIL The specified address is not available from the local

machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with

this socket.

83

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network can't be reached from this host at this

time.

See Also WSPSocket()

84

3.1.24 WSPSetBlockingHook32()

Description Establish an application-specific blocking hook function.

 #include <ws2spi.h>

 LPBLOCKINGPRC WSPAPI WSPSetBlockingHook32 (LPBLOCKINGPROC

lpBlockFunc, int FAR * lpErrno);

lpBlockFunc A pointer to the procedure instance address of the blocking function to

be installed.

lpErrno A pointer to the error code.

Remarks This function is only applicable to the 32-bit SPI.

This function installs a new function which the Winsock Service Provider should use to

implement blocking socket function calls.

Winsock Service Providers include a default mechanism by which blocking socket

functions are implemented. The function WSPSetBlockingHook32() gives the

application the ability to execute its own function at “blocking” time in place of the

default function.

When an application invokes a blocking Windows Sockets API operation, the Winsock

Service Provider initiates the operation and then enters a loop which is similar to the

following pseudocode:

for(;;) {
 /* flush messages for good user response */
 while(BlockingHook())
 ;
 /* check for WSPCancelBlockingCall32() */
 if(operation_cancelled())
 break;
 /* check to see if operation completed */
 if(operation_complete())
 break; /* normal completion */
}

Note that Winsock Service Providers may perform the above steps in a different order; for

example, the check for operation complete may occur before calling the blocking hook.

The default BlockingHook() function is equivalent to:

BOOL DefaultBlockingHook(void) {
 MSG msg;
 BOOL ret;
 /* get the next message if any */
 ret = (BOOL)PeekMessage(&msg,NULL,0,0,PM_REMOVE);
 /* if we got one, process it */
 if (ret) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 /* TRUE if we got a message */
 return ret;

85

}

The WSPSetBlockingHook32() function is provided to support those applications which

require more complex message processing - for example, those employing the MDI

(multiple document interface) model. It is not intended as a mechanism for performing

general applications functions. In particular, the only Windows Sockets SPI function

which may be issued from a custom blocking hook function is

WSPCancelBlockingCall32(), which will cause the blocking loop to terminate.

This function must be implemented on a per-thread basis for multithreaded versions of

Windows such as Windows NT. It thus provides for a particular thread to replace the

blocking mechanism without affecting other threads.

In multithreaded versions of Windows, there is no default blocking hook--blocking calls

block the thread that makes the call. However, an application may install a specific

blocking hook by calling WSPSetBlockingHook32(). This allows easy portability of

applications that depend on the blocking hook behavior.

Return Value The return value is a pointer to the procedure-instance of the previously installed blocking

function. The Winsock DLL should save this return value so that it can be restored if

necessary. (If "nesting" is not important, the Winsock DLL may simply discard the value

returned by WSPSetBlockingHook32() and eventually use

WSPUnhookBlockingHook32() to restore the default mechanism.) If the operation fails,

a NULL pointer is returned, and a specific error code is available in lpErrno.

Error Codes WSANOTINITIALISED A successful WSPStartup() must occur before using

this SPI.

WSAENETDOWN The Windows Sockets implementation has detected

that the network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets operation is in

progress.

See Also WSPCancelBlockingCall32(), WSPIsBlocking32(), WSPUnhookBlockingHook32()

86

3.1.25 WSPSocket()

Description Create a socket which is bound to a specific transport service provider.

{ May be revised to use PROTOCOL_INFO as an input param in place of af, type, protocol parameters}

 #include <ws2spi.h>

 SOCKET WSPAPI WSPSocket (int af, int type, int protocol, DWORD dwProviderId,

int nFlags, int FAR * lpErrno);

af An address family specification.

type A type specification for the new socket.

protocol A particular protocol to be used with the socket, or 0 if the caller does

not wish to specify a protocol.

dwProviderId An opaque value returned by the WSAEnumProtocols() API that

identifies a unique service provider. This information is useful to

provider implementations that present multiple service provider

appearances to Winsock.

iFlags The socket attribute specification.

lpErrno A pointer to the error code.

Remarks WSPSocket() causes a socket descriptor and any related resources to be allocated and

bound to the transport service provider specified by dwProviderId. If protocol is not

specified (i.e., equal to zero), the default for the specified socket type is used. However,

the address family may be given as AF_UNSPEC (unspecified), in which case the

protocol parameter must be specified. The protocol number to use is particular to the

"communication domain'' in which communication is to take place.

{The new name res stuff should obviate the need to enumerate the list of supported socket

types here}

The iFlags parameter may be used to specify the attributes of the socket by or-ing any of

the following Flags:

Flag Meaning

WSA_FLAG_OVERLAPPED

This flag causes an overlapped socket to be created. Overlapped

sockets must utilize the overlapped I/O features of the WSPSend(),

WSPSendTo(), WSPRecv(), WSPRecvFrom() SPI for I/O operations,

and allows multiple of these to be initiated and in progress

simultaneously. Overlapped sockets are always non-blocking.

Connection-oriented sockets such as SOCK_STREAM provide full-duplex connections,

and must be in a connected state before any data may be sent or received on it. A

connection to another socket is created with a connect() call. Once connected, data may

be transferred using WSPSend() and WSPRecv() calls. When a session has been

completed, a WSPCloseSocket() must be performed.

87

The communications protocols used to implement a reliable, connection-oriented socket

ensure that data is not lost or duplicated. If data for which the peer protocol has buffer

space cannot be successfully transmitted within a reasonable length of time, the

connection is considered broken and subsequent calls will fail with the error code set to

WSAETIMEDOUT.

Connectionless, message-oriented sockets allow sending and receiving of datagrams to

and from arbitrary peers using WSPSendTo() and WSPRecvFrom(). If such a socket is

connect()ed to a specific peer, datagrams may be send to that peer using WSPSend() and

may be received from (only) this peer using WSPRecv().

Return Value If no error occurs, WSPSocket() returns a descriptor referencing the new socket.

Otherwise, a value of INVALID_SOCKET is returned, and a specific error code is

available in lpErrno.

Error Codes WSANOTINITIALISED A successful WSPStartup() must occur before using

this SPI.

WSAENETDOWN The network subsystem has failed.

WSAEAFNOSUPPORT The specified address family is not supported.

WSAEINPROGRESS A blocking Winsock call is in progress, or the service

provider is still processing a callback function.

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be

created.

WSAEPROTONOSUPPORT The specified protocol is not supported.

WSAEPROTOTYPE The specified protocol is the wrong type for this

socket.

WSAESOCKTNOSUPPORT The specified socket type is not supported in this

address family.

See Also WSPAccept, WSPBind(), WSPConnect(), WSPGetSockName(), WSPGetSockOpt(),

WSPSetSockOpt(), WSPListen(), WSPRecv(), WSARecvFrom(), WSASend(),

WSASendTo(), WSPShutdown(), WSPIoctlSocket().

88

3.1.26 WSPStartup()

Description

 #include <ws2spi.h>

 int WSPAPI WSPStartup (WORD wVersionRequested,

LPWSADATA lpWSAData);

wVersionRequested The highest version of Winsock SPI support that the caller can

use. The high order byte specifies the minor version (revision)

number; the low-order byte specifies the major version

number.

lpWSAData A pointer to the WSADATA data structure that is to receive

details of the Winsock service provider.

Remarks This function MUST be the first Winsock SPI function called by the Winsock DLL. It

allows the Winsock DLL to specify the version of Winsock SPI required and to retrieve

details of the specific Winsock service provider implementation. The Winsock DLL may

only issue further Winsock SPI functions after a successful WSPStartup() invocation.

In order to support future Winsock service providers and the Winsock DLL which may

have functionality differences from the current Winsock SPI, a negotiation takes place in

WSPStartup(). The caller of WSPStartup() (namely, the Winsock DLL) and the

Winsock service provider indicate to each other the highest version that they can support,

and each confirms that the other's highest version is acceptable. Upon entry to

WSPStartup(), the Winsock service provider examines the version requested by the

Winsock DLL. If this version is higher than the lowest version supported by the service

provider, the call succeeds and the service provider returns in wHighVersion the highest

version it supports and in wVersion the minimum of its high version and

wVersionRequested. The Winsock service provider then assumes that the Winsock DLL

will use wVersion. If the wVersion field of the WSADATA structure is unacceptable to

the caller, it should call WSPCleanup() and either search for another Winsock service

provider or fail to initialize.

This negotiation allows both a Winsock service provider and the Winsock DLL to support

a range of Winsock versions. The Winsock DLL can successfully utilize a Winsock

service provider if there is any overlap in the version ranges. The following chart gives

examples of how WSPStartup() works in conjunction with different DLL and Winsock

service provider (SP) versions:

DLL versions SP Versions wVersionRequested wVersion wHighVersion End Result

1.1 1.1 1.1 1.1 1.1 use 1.1

1.0 1.1 1.0 1.1 1.0 1.0 use 1.0

1.0 1.0 1.1 1.0 1.0 1.1 use 1.0

1.1 1.0 1.1 1.1 1.1 1.1 use 1.1

1.1 1.0 1.1 1.0 1.0 DLL fails

1.0 1.1 1.0 --- --- WSAVERNOTSUPPORTED

1.0 1.1 1.0 1.1 1.1 1.1 1.1 use 1.1

1.1 2.0 1.1 2.0 1.1 1.1 use 1.1

2.0 1.1 2.0 1.1 1.1 DLL fails

89

The following code fragment demonstrates how a DLL which supports only version 1.1 of

Winsock SPI makes a WSPStartup() call:

WORD wVersionRequested;
WSADATA WSAData;
int err;

wVersionRequested = MAKEWORD(1, 1);

err = WSPStartup(wVersionRequested, &WSAData);
if (err != 0) {
 /* Tell the user that we couldn't find a useable */
 /* Winsock service provider. */
 return;
}

/* Confirm that the Winsock service provider supports 1.1.*/
/* Note that if the service provider supports versions
greater */
/* than 1.1 in addition to 1.1, it will still return */
/* 1.1 in wVersion since that is the version we */
/* requested. */

if (LOBYTE(WSAData.wVersion) != 1 ||
 HIBYTE(WSAData.wVersion) != 1) {
 /* Tell the user that we couldn't find a useable */
 /* Winsock service provider. */
 WSPCleanup();
 return;
}

/* The Winsock service provider is acceptable. Proceed. */

And this code fragment demonstrates how a Winsock service provider which supports

only version 1.1 performs the WSPStartup() negotiation:

/* Make sure that the version requested is >= 1.1. */
/* The low byte is the major version and the high */
/* byte is the minor version. */

if (LOBYTE(wVersionRequested) < 1 ||
 (LOBYTE(wVersionRequested) == 1 &&
 HIBYTE(wVersionRequested) < 1) {
 return WSAVERNOTSUPPORTED;
}

/* Since we only support 1.1, set both wVersion and */
/* wHighVersion to 1.1. */

lpWSAData->wVersion = MAKEWORD(1, 1);
lpWSAData->wHighVersion = MAKEWORD(1, 1);

Once the Winsock DLL has made a successful WSPStartup() call, it may proceed to

make other Winsock SPI calls as needed. When it has finished using the services of the

Winsock service provider, the Winsock DLL must call WSPCleanup() in order to allow

the Winsock service provider to free any resources for the Winsock DLL.

Details of the actual Winsock service provider are described in the WSAData structure

defined as follows:

90

struct WSAData {
WORD wVersion;
WORD wHighVersion;
char szDescription[WSADESCRIPTION_LEN+1];
char szSystemStatus[WSASYSSTATUS_LEN+1];

char FAR * lpVendorInfo;
};

The members of this structure are:

Element Usage

wVersion The version of the Winsock SPI specification that the Winsock service

provider expects the caller to use.

wHighVersion The highest version of the Winsock SPI specification that this service

provider can support (also encoded as above). Normally this will be the

same as wVersion.

szDescription A null-terminated ASCII string into which the Winsock DLL copies a

description of the Winsock service provider. The text (up to 256

characters in length) may contain any characters except control and

formatting characters: the most likely use that an application will put

this to is to display it (possibly truncated) in a status message.

szSystemStatus A null-terminated ASCII string into which the Winsock service

provider copies relevant status or configuration information. The

Winsock service provider should use this field only if the information

might be useful to the user or support staff: it should not be considered

as an extension of the szDescription field.

. . WSPGetSockOpt. lpVendorInfoThis value should be ignored. It is retained for

compatibility with Windows Sockets specification 1.1. The Winsock

DLL needing to access vendor-specific configuration information

should use WSPGetSockOpt() to retrieve the value of option

PVD_CONFIG. The definition of this value (if utilized) is beyond the

scope of this specification.

Return Value WSPStartup() returns zero if successful. Otherwise it returns one of the error codes

listed below.

Notes For

Winsock Service

Providers The Winsock DLL will make one and only one WSPStartup() call before issuing any

other Winsock SPI calls for each Winsock service provider. This function can thus be

utilized for initialization purposes.

Further issues are discussed in the notes for WSPCleanup().

Error Codes WSASYSNOTREADY Indicates that the underlying network subsystem is

not ready for network communication.

WSAVERNOTSUPPORTED The version of Winsock SPI support requested is not

provided by this particular Winsock service provider.

WSAEFAULT The lpWSAData parameter is invalid.

See Also WSPSend(), WSPSendTo(), WSPCleanup()

91

3.1.27 WSPUnhookBlockingHook32()

Description Restores the default blocking hook function.

 #include <ws2spi.h>

 int WSPAPI WSPUnhookBlockingHook32 (int FAR * lpErrno);

lpErrno A pointer to the error code.

Remarks This function is only applicable to the 32-bit SPI.

This function removes any previous blocking hook that has been installed and reinstalls

the default blocking mechanism.

WSPUnhookBlockingHook32() will always install the default mechanism, not the

previous mechanism. If the Winsock DLL wishes to nest blocking hooks - i.e. to establish

a temporary blocking hook function and then revert to the previous mechanism (whether

the default or one established by an earlier WSPSetBlockingHook32()) - it must save

and restore the value returned by WSPSetBlockingHook32(); it cannot use

WSPUnhookBlockingHook32().

In multithreaded versions of Windows such as Windows NT, there is no default blocking

hook. Calling WSPUnhookBlockingHook32() disables any blocking hook installed by

the application and any blocking calls made block the thread which made the call.

Return Value The return value is 0 if the operation has been successfully initiated. Otherwise the value

SOCKET_ERROR is returned, and a specific error number is available in lpErrno.

Error Codes WSANOTINITIALISED A successful WSPStartup() must occur before using

this SPI.

See Also WSPCancelBlockingCall32(), WSPIsBlocking32(), WSPSetBlockingHook32()

92

4. Upcalls

This section contains the private “upcalls” that service providers may make into the Windows Sockets DLL.

93

4.1 WPUCreateSocketHandle()

Description Creates a new socket handle.

 #include <ws2spi.h>

SOCKET WSPAPI WPUCreateSocketHandle (DWORD dwProviderId, LPVOID

lpContext, int FAR * lpErrno);

dwProviderId Identifies the calling service provider. {We must provide a mechanism

for getting this to the provider, perhaps at WspStartup() time?}

lpContext A context value to associate with the new socket handle.

lpErrno A pointer to the error code.

Remarks This routine creates a new socket handle for the specified provider. The handle returned is

Winsock specific; it is not a proper system handle.

This routine is only used by providers that do not provide real system handles.

Return Value If no error occurs, WPUCreateSocketHandle() returns the new socket handle.

Otherwise, it returns INVALID_SOCKET, and a specific error code is available in

lpErrno.

Error Codes WSAENOBUFS Not enough buffers available, too many sockets.

See Also WPUCloseSocketHandle().

94

4.2 WPUCloseSocketHandle()

Description Closes an existing socket handle.

 #include <ws2spi.h>

int WSPAPI WPUCloseSocketHandle (SOCKET s, int FAR * lpErrno);

s Identifies a socket handle created with WPUCreateSocketHandle().

lpErrno A pointer to the error code.

Remarks This routine closes an existing socket handle. This function removes the socket from

Winsock’s internal socket table. The owning service provider is responsible for releasing

any resources associated with the socket.

Return Value If no error occurs, WPUCreateSocketHandle() returns 0. Otherwise, it returns

SOCKET_ERROR, and a specific error code is available in lpErrno.

Error Codes WSAENOTSOCK The descriptor is not a socket created by

WPUCreateSocketHandle().

See Also WPUCreateSocketHandle().

95

4.3 WPUQuerySocketHandleContext()

Description Queries the context value associated with the specified socket handle.

 #include <ws2spi.h>

int WSPAPI WPUQuerySocketHandleContext (SOCKET s, LPVOID FAR *

lpContext, int FAR * lpErrno);

s Identifies the socket whose context is to be queried.

lpContext A pointer to an LPVOID that will receive the context value.

lpErrno A pointer to the error code.

Remarks This routine queries the current context value associated with the specified socket handle.

Service providers typically use this function to retrieve a pointer to provider-specific data

associated with the socket. For example, a service provider may use the socket context to

store a pointer to a structure containing the socket’s state, local and remote transport

addresses, event objects for signaling network events, etc.

Return Value If no error occurs, WPUQuerySocketHandleContext() returns 0 and stores the current

context value in lpContext. Otherwise, it returns SOCKET_ERROR, and a specific error

code is available in lpErrno.

Error Codes WSAENOTSOCK The descriptor is not a socket created by

WPUCreateSocketHandle().

See Also WPUCreateSocketHandle(), WPUSetSocketHandleContext().

96

4.4 WPUSetSocketHandleContext()

Description Sets the context value associated with the specified socket handle.

 #include <ws2spi.h>

int WSPAPI WPUSetSocketHandleContext (SOCKET s, LPVOID lpContext, int

FAR * lpErrno);

s Identifies the socket whose context is to be set.

lpContext The new context value to associate with the socket.

lpErrno A pointer to the error code.

Remarks This routine sets the current context value associated with the specified socket handle.

Return Value If no error occurs, WPUSetSocketHandleContext() returns 0 and stores lpContext and

the socket’s new context value. Otherwise, it returns SOCKET_ERROR, and a specific

error code is available in lpErrno.

Error Codes WSAENOTSOCK The descriptor is not a socket created by

WPUCreateSocketHandle().

See Also WPUCreateSocketHandle(), WPUQuerySocketHandleContext().

97

4.5 WPUQueueUserAPC32()

Description Queues a user-mode APC against the specified thread.

 #include <ws2spi.h>

int WSPAPI WPUQueueUserAPC32 (DWORD dwThreadId, LPWSAUSERAPC

lpfnUserApc, DWORD dwContext, int FAR * lpErrno);

dwThreadId Identifies the target thread for the APC. This is typically a value

returned by the WPUGetCurrentThreadId() upcall.

lpfnUserApc Points to the function to be called as a user-mode APC.

dwContext A context value to be passed in to the user-mode APC function.

lpErrno A pointer to the error code.

Remarks This routine queues a user-mode APC against the specified thread. The APC will only

execute when the specified thread is blocked in an alertable wait. This function is only

available in 32 bit versions of the Winsock 2 DLL.

LPWSAUSERAPC is defined as follows:

typedef VOID (FAR * LPWSAUSERAPC)(DWORD dwContext);

Return Value If no error occurs, WPUQueueUserAPC32() returns 0 and queues the APC for the

specified thread. Otherwise, it returns SOCKET_ERROR, and a specific error code is

available in lpErrno.

Error Codes ???? dwThreadId does not specify a valid thread.

See Also WPUGetCurrentThreadId32().

98

4.6 WPUGetCurrentThreadId32()

Description Returns an operating-system specific identifier for the current thread.

 #include <ws2spi.h>

DWORD WSPAPI WPUGetCurrentThreadId32 (VOID);

Remarks This routine returns an operating-system specific identifier for the current thread. The

returned value is suitable for use in the WPUQueueUserAPC32() upcall.

Return Value WPUGetCurrentThreadId32() returns the current thread ID.

See Also WPUQueueUserAPC32().

99

5. Installation APIs

This section is super preliminary. These APIs will be receive additional attention after the December 12th

meeting.

5.1 WPUInstallProvider()

Description Installs the specified provider into the system configuration database.

 #include <ws2spi.h>

int WSPAPI WPUInstallProvider(const char FAR * lpszProviderName, const char

FAR * lpszProviderDllPath, const PROTOCOL_INFO FAR * lpProtocolInfoList,

DWORD dwNumberOfEntries, DWORD FAR * lpdwProviderId, int FAR * lpErrno);

lpszProviderName Points to locally unique name for this provider. This name

must not conflict with any currently installed provider.

lpszProviderDllPath Points to a fully qualified path to the provider’s DLL image.

The Winsock DLL passes this path into the LoadLibrary API

to load the provider.

lpProtocolInfoList Points to an array of PROTOCOL_INFO structures. Each

structure defines a protocol/address_family/socket_type

supported by the provider.

dwNumberOfEntries Contains the number of entries in the lpProtocolInfoList array.

lpdwProviderId Points to a DWORD that will receive the locally unique

identifier for the newly installed provider.

lpErrno A pointer to the error code.

Remarks This routine creates the necessary common Winsock 2 configuration information for the

specified provider. After this routine completes successfully, the protocol information

provided in lpProtocolInfoList will be returned by the WSAEnumProtocols API.

Any file installation or service provider specific configuration information must be

performed by the provider setup application.

Return Value If no error occurs, WPUInstallProvider() returns 0. Otherwise, it returns

SOCKET_ERROR, and a specific error code is available in lpErrno.

Error Codes ???? ????

See Also WPUDeinstallProvider(), WSAEnumProtocols().

100

5.2 WPUDeinstallProvider()

Description Removes the specified provider from the system configuration database.

 #include <ws2spi.h>

int WSPAPI WPUDeinstallProvider(DWORD dwProviderId, int FAR * lpErrno);

dwProviderId The locally unique identifier of the provider to deinstall. This

must be a value previously returned by

WPUInstallProvider().

lpErrno A pointer to the error code.

Remarks This routine removes the common Winsock 2 configuration information for the specified

provider. After this routine completes successfully, the protocol information associated

with the provider will not be returned by the WSAEnumProtocols API.

Any file removal or service provider specific configuration information removal must be

performed by the provider setup application.

Return Value If no error occurs, WPUDeinstallProvider() returns 0. Otherwise, it returns

SOCKET_ERROR, and a specific error code is available in lpErrno.

Error Codes ???? ????

See Also WPUInstallProvider(), WSAEnumProtocols().

101

Appendix A. Error Codes and Header Files

A.1 Error Codes
The following is a list of possible error codes available in the lpErrno parameter of each function, along

with their explanations. The error numbers are consistently set across all Winsock-compliant

implementations.

Winsock code Berkeley equivalent Error Interpretation
WSAEINTR EINTR 10004 As in standard C
WSAEBADF EBADF 10009 As in standard C
WSAEACCES EACCES 10013 As in standard C
WSAEFAULT EFAULT 10014 As in standard C
WSAEINVAL EINVAL 10022 As in standard C
WSAEMFILE EMFILE 10024 As in standard C
WSAEWOULDBLOCK EWOULDBLOCK 10035 As in BSD
WSAEINPROGRESS EINPROGRESS 10036 This error is returned if any

Winsock function is
called while a blocking function is
in progress.

WSAEALREADY EALREADY 10037 As in BSD
WSAENOTSOCK ENOTSOCK 10038 As in BSD
WSAEDESTADDRREQ EDESTADDRREQ 10039 As in BSD
WSAEMSGSIZE EMSGSIZE 10040 As in BSD
WSAEPROTOTYPE EPROTOTYPE 10041 As in BSD
WSAENOPROTOOPT ENOPROTOOPT 10042 As in BSD
WSAEPROTONOSUPPORT EPROTONOSUPPORT 10043 As in BSD
WSAESOCKTNOSUPPORT ESOCKTNOSUPPORT 10044 As in BSD
WSAEOPNOTSUPP EOPNOTSUPP 10045 As in BSD
WSAEPFNOSUPPORT EPFNOSUPPORT 10046 As in BSD
WSAEAFNOSUPPORT EAFNOSUPPORT 10047 As in BSD
WSAEADDRINUSE EADDRINUSE 10048 As in BSD
WSAEADDRNOTAVAIL EADDRNOTAVAIL 10049 As in BSD
WSAENETDOWN ENETDOWN 10050 As in BSD. This error may be

reported at any time if the Winsock
service provider detects an
underlying failure.

WSAENETUNREACH ENETUNREACH 10051 As in BSD
WSAENETRESET ENETRESET 10052 As in BSD
WSAECONNABORTED ECONNABORTED 10053 As in BSD
WSAECONNRESET ECONNRESET 10054 As in BSD
WSAENOBUFS ENOBUFS 10055 As in BSD
WSAEISCONN EISCONN 10056 As in BSD
WSAENOTCONN ENOTCONN 10057 As in BSD
WSAESHUTDOWN ESHUTDOWN 10058 As in BSD
WSAETOOMANYREFS ETOOMANYREFS 10059 As in BSD
WSAETIMEDOUT ETIMEDOUT 10060 As in BSD
WSAECONNREFUSED ECONNREFUSED 10061 As in BSD
WSAELOOP ELOOP 10062 As in BSD
WSAENAMETOOLONG ENAMETOOLONG 10063 As in BSD
WSAEHOSTDOWN EHOSTDOWN 10064 As in BSD
WSAEHOSTUNREACH EHOSTUNREACH 10065 As in BSD
WSASYSNOTREADY 10091 Returned by WSPStartup()

indicating that the network
subsystem is unusable.

WSAVERNOTSUPPORTED 10092 Returned by WSPStartup()
indicating that the Winsock
service provider cannot support the
Winsock DLL.

WSAHOST_NOT_FOUND HOST_NOT_FOUND 11001 As in BSD.
WSATRY_AGAIN TRY_AGAIN 11002 As in BSD
WSANO_RECOVERY NO_RECOVERY 11003 As in BSD
WSANO_DATA NO_DATA 11004 As in BSD

The first set of definitions is present to resolve contentions between standard C error codes which may be

defined inconsistently between various C compilers.

The second set of definitions provides Winsock versions of regular Berkeley Sockets error codes.

102

The third set of definitions consists of extended Winsock-specific error codes.

The error numbers are derived from the ws2spi.h header file listed in section A.2, and are based on the fact

that Winsock error numbers are computed by adding 10000 to the "normal" Berkeley error number.

Note that this table does not include all of the error codes defined in ws2spi.h. This is because it includes

only errors which might reasonably be returned by a Winsock service provider: ws2spi.h, on the other hand,

includes a full set of BSD definitions to ensure compatibility with ported software.

103

A.2 Winsock SPI Header File - ws2spi.h

The ws2spi.h header file includes a number of types and definitions from the standard Windows header file

windows.h. The windows.h in the Windows 3.0 SDK (Software Developer's Kit) lacks a #include
guard, so if you need to include windows.h as well as ws2spi.h, you should define the symbol

_INC_WINDOWS before #including ws2spi.h, as follows:
#include <windows.h>
#define _INC_WINDOWS
#include <ws2spi.h>

Users of the SDK for Windows 3.1 and later need not do this.

A Winsock service provider vendor MUST NOT make any modifications to this header file which could

impact binary compatibility of Winsock applications. The constant values, function parameters and return

codes, and the like must remain consistent across all Winsock service provider vendors.

/* WS2SPI.H--definitions to be used with the Winsock service provider.
 *
 * This header file corresponds to version 2.0 of the Winsock SPI specification.
 *
 * This file includes parts which are Copyright (c) 1982-1986 Regents
 * of the University of California. All rights reserved. The
 * Berkeley Software License Agreement specifies the terms and
 * conditions for redistribution.
 */

#ifndef _WS2SPI_
#define _WS2SPI_

#ifndef _WS2API_

/*
 * Pull in WINDOWS.H if necessary
 */
#ifndef _INC_WINDOWS
#include <windows.h>
#endif /* _INC_WINDOWS */

/*
 * SPI function linkage.
 */

#define WSPAPI WSPAPI

/*
 * Basic system type definitions, taken from the BSD file sys/types.h.
 */
typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned int u_int;
typedef unsigned long u_long;

/*
 * The new type to be used in all
 * instances which refer to sockets.
 */
typedef u_int SOCKET;

/*
 * Select uses arrays of SOCKETs. These macros manipulate such
 * arrays. FD_SETSIZE may be defined by the user before including
 * this file, but the default here should be >= 64.
 *
 * CAVEAT IMPLEMENTOR and USER: THESE MACROS AND TYPES MUST BE
 * INCLUDED IN WS2SPI.H EXACTLY AS SHOWN HERE.
 */
#ifndef FD_SETSIZE
#define FD_SETSIZE 64

104

#endif /* FD_SETSIZE */

typedef struct fd_set {
 u_short fd_count; /* how many are SET? */
 SOCKET fd_array[FD_SETSIZE]; /* an array of SOCKETs */
} fd_set;

#ifdef __cplusplus
extern "C" {
#endif

extern int WSPAPI __WSAFDIsSet(SOCKET, fd_set FAR *);

#ifdef __cplusplus
}
#endif

#define FD_CLR(fd, set) do { \
 u_int __i; \
 for (__i = 0; __i < ((fd_set FAR *)(set))->fd_count ; __i++) { \
 if (((fd_set FAR *)(set))->fd_array[__i] == fd) { \
 while (__i < ((fd_set FAR *)(set))->fd_count-1) { \
 ((fd_set FAR *)(set))->fd_array[__i] = \
 ((fd_set FAR *)(set))->fd_array[__i+1]; \
 __i++; \
 } \
 ((fd_set FAR *)(set))->fd_count--; \
 break; \
 } \
 } \
} while(0)

#define FD_SET(fd, set) do { \
 if (((fd_set FAR *)(set))->fd_count < FD_SETSIZE) \
 ((fd_set FAR *)(set))->fd_array[((fd_set FAR *)(set))->fd_count++]=fd;\
} while(0)

#define FD_ZERO(set) (((fd_set FAR *)(set))->fd_count=0)

#define FD_ISSET(fd, set) __WSAFDIsSet((SOCKET)fd, (fd_set FAR *)set)

/*
 * Structure used in select() call, taken from the BSD file sys/time.h.
 */
struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* and microseconds */
};

/*
 * Operations on timevals.
 *
 * NB: timercmp does not work for >= or <=.
 */
#define timerisset(tvp) ((tvp)->tv_sec || (tvp)->tv_usec)
#define timercmp(tvp, uvp, cmp) \
 ((tvp)->tv_sec cmp (uvp)->tv_sec || \
 (tvp)->tv_sec == (uvp)->tv_sec && (tvp)->tv_usec cmp (uvp)->tv_usec)
#define timerclear(tvp) (tvp)->tv_sec = (tvp)->tv_usec = 0

/*
 * Winsock extension
 */
#define MAKEWORD(low, high) ((WORD)(((BYTE)(low)) | (((WORD)((BYTE)(high))) << 8)))

/*
 * Commands for ioctlsocket(), taken from the BSD file fcntl.h.
 *
 *
 * Ioctl's have the command encoded in the lower word,
 * and the size of any in or out parameters in the upper
 * word. The high 2 bits of the upper word are used
 * to encode the in/out status of the parameter; for now
 * we restrict parameters to at most 128 bytes.
 */
#define IOCPARM_MASK 0x7f /* parameters must be < 128 bytes */

105

#define IOC_VOID 0x20000000 /* no parameters */
#define IOC_OUT 0x40000000 /* copy out parameters */
#define IOC_IN 0x80000000 /* copy in parameters */
#define IOC_INOUT (IOC_IN|IOC_OUT)
 /* 0x20000000 distinguishes new &
 old ioctl's */
#define _IO(x,y) (IOC_VOID|(x<<8)|y)

#define _IOR(x,y,t) (IOC_OUT|(((long)sizeof(t)&IOCPARM_MASK)<<16)|(x<<8)|y)

#define _IOW(x,y,t) (IOC_IN|(((long)sizeof(t)&IOCPARM_MASK)<<16)|(x<<8)|y)

#define FIONREAD _IOR('f', 127, u_long) /* get # bytes to read */
#define FIONBIO _IOW('f', 126, u_long) /* set/clear non-blocking i/o */
#define FIOASYNC _IOW('f', 125, u_long) /* set/clear async i/o */

/* Socket I/O Controls */
#define SIOCSHIWAT _IOW('s', 0, u_long) /* set high watermark */
#define SIOCGHIWAT _IOR('s', 1, u_long) /* get high watermark */
#define SIOCSLOWAT _IOW('s', 2, u_long) /* set low watermark */
#define SIOCGLOWAT _IOR('s', 3, u_long) /* get low watermark */
#define SIOCATMARK _IOR('s', 7, u_long) /* at oob mark? */

/*
 * Structures returned by network data base library, taken from the
 * BSD file netdb.h. All addresses are supplied in host order, and
 * returned in network order (suitable for use in system calls).
 */

struct hostent {
 char FAR * h_name; /* official name of host */
 char FAR * FAR * h_aliases; /* alias list */
 short h_addrtype; /* host address type */
 short h_length; /* length of address */
 char FAR * FAR * h_addr_list; /* list of addresses */
#define h_addr h_addr_list[0] /* address, for backward compat */
};

/*
 * It is assumed here that a network number
 * fits in 32 bits.
 */
struct netent {
 char FAR * n_name; /* official name of net */
 char FAR * FAR * n_aliases; /* alias list */
 short n_addrtype; /* net address type */
 u_long n_net; /* network # */
};

struct servent {
 char FAR * s_name; /* official service name */
 char FAR * FAR * s_aliases; /* alias list */
 short s_port; /* port # */
 char FAR * s_proto; /* protocol to use */
};

struct protoent {
 char FAR * p_name; /* official protocol name */
 char FAR * FAR * p_aliases; /* alias list */
 short p_proto; /* protocol # */
};

/*
 * Constants and structures defined by the internet system,
 * Per RFC 790, September 1981, taken from the BSD file netinet/in.h.
 */

/*
 * Protocols
 */
#define IPPROTO_IP 0 /* dummy for IP */
#define IPPROTO_ICMP 1 /* control message protocol */
#define IPPROTO_GGP 2 /* gateway^2 (deprecated) */
#define IPPROTO_TCP 6 /* tcp */
#define IPPROTO_PUP 12 /* pup */
#define IPPROTO_UDP 17 /* user datagram protocol */

106

#define IPPROTO_IDP 22 /* xns idp */
#define IPPROTO_ND 77 /* UNOFFICIAL net disk proto */

#define IPPROTO_RAW 255 /* raw IP packet */
#define IPPROTO_MAX 256

/*
 * Port/socket numbers: network standard functions
 */
#define IPPORT_ECHO 7
#define IPPORT_DISCARD 9
#define IPPORT_SYSTAT 11
#define IPPORT_DAYTIME 13
#define IPPORT_NETSTAT 15
#define IPPORT_FTP 21
#define IPPORT_TELNET 23
#define IPPORT_SMTP 25
#define IPPORT_TIMESERVER 37
#define IPPORT_NAMESERVER 42
#define IPPORT_WHOIS 43
#define IPPORT_MTP 57

/*
 * Port/socket numbers: host specific functions
 */
#define IPPORT_TFTP 69
#define IPPORT_RJE 77
#define IPPORT_FINGER 79
#define IPPORT_TTYLINK 87
#define IPPORT_SUPDUP 95

/*
 * UNIX TCP sockets
 */
#define IPPORT_EXECSERVER 512
#define IPPORT_LOGINSERVER 513
#define IPPORT_CMDSERVER 514
#define IPPORT_EFSSERVER 520

/*
 * UNIX UDP sockets
 */
#define IPPORT_BIFFUDP 512
#define IPPORT_WHOSERVER 513
#define IPPORT_ROUTESERVER 520
 /* 520+1 also used */

/*
 * Ports < IPPORT_RESERVED are reserved for
 * privileged processes (e.g. root).
 */
#define IPPORT_RESERVED 1024

/*
 * Link numbers
 */
#define IMPLINK_IP 155
#define IMPLINK_LOWEXPER 156
#define IMPLINK_HIGHEXPER 158

/*
 * Internet address (old style... should be updated)
 */
struct in_addr {
 union {
 struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
 } S_un;
#define s_addr S_un.S_addr
 /* can be used for most tcp & ip code */
#define s_host S_un.S_un_b.s_b2
 /* host on imp */
#define s_net S_un.S_un_b.s_b1
 /* network */
#define s_imp S_un.S_un_w.s_w2

107

 /* imp */
#define s_impno S_un.S_un_b.s_b4
 /* imp # */
#define s_lh S_un.S_un_b.s_b3
 /* logical host */
};

/*
 * Definitions of bits in internet address integers.
 * On subnets, the decomposition of addresses to host and net parts
 * is done according to subnet mask, not the masks here.
 */
#define IN_CLASSA(i) (((long)(i) & 0x80000000) == 0)
#define IN_CLASSA_NET 0xff000000
#define IN_CLASSA_NSHIFT 24
#define IN_CLASSA_HOST 0x00ffffff
#define IN_CLASSA_MAX 128

#define IN_CLASSB(i) (((long)(i) & 0xc0000000) == 0x80000000)
#define IN_CLASSB_NET 0xffff0000
#define IN_CLASSB_NSHIFT 16
#define IN_CLASSB_HOST 0x0000ffff
#define IN_CLASSB_MAX 65536

#define IN_CLASSC(i) (((long)(i) & 0xc0000000) == 0xc0000000)
#define IN_CLASSC_NET 0xffffff00
#define IN_CLASSC_NSHIFT 8
#define IN_CLASSC_HOST 0x000000ff

#define INADDR_ANY (u_long)0x00000000
#define INADDR_LOOPBACK 0x7f000001
#define INADDR_BROADCAST (u_long)0xffffffff
#define INADDR_NONE 0xffffffff
/* Winsock extension */
#define ADDR_ANY INADDR_ANY

/*
 * Socket address, internet style.
 */
struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

#define WSADESCRIPTION_LEN 256
#define WSASYS_STATUS_LEN 128

typedef struct WSAData {
 WORD wVersion;
 WORD wHighVersion;
 char szDescription[WSADESCRIPTION_LEN+1];
 char szSystemStatus[WSASYS_STATUS_LEN+1];
 unsigned short iMaxSockets;
 unsigned short iMaxUdpDg;
 char FAR * lpVendorInfo;
} WSADATA;

typedef WSADATA FAR *LPWSADATA;

/*
 * Options for use with [gs]etsockopt at the IP level.
 */
#define IP_OPTIONS 1 /* set/get IP per-packet options */

/*
 * Definitions related to sockets: types, address families, options,
 * taken from the BSD file sys/socket.h.
 */

/*
 * This is used instead of -1, since the
 * SOCKET type is unsigned.
 */

108

#define INVALID_SOCKET (SOCKET)(~0)
#define SOCKET_ERROR (-1)

/*
 * Types
 */
#define SOCK_STREAM 1 /* stream socket */
#define SOCK_DGRAM 2 /* datagram socket */
#define SOCK_RAW 3 /* raw-protocol interface */
#define SOCK_RDM 4 /* reliably-delivered message */
#define SOCK_SEQPACKET 5 /* sequenced packet stream */

/*
 * Types -- Winsock extensions for socket types with the following convention
 * SOCK[_REL|_UNREL][_ISOCH][_UNISEND|_UNIRECV][_STREAM|_DGRAM|_DSTREAM]
 */
#define SOCK_REL_STREAM SOCK_STREAM
#define SOCK_REL_DSTREAM SOCK_SEQPACKET
#define SOCK_UNREL_DSTREAM 101
#define SOCK_REL_UNISEND_DSTREAM 102
#define SOCK_REL_UNIRECV_DSTREAM 103
#define SOCK_UNREL_UNISEND_DSTREAM 104
#define SOCK_UNREL_UNIRECV_DSTREAM 105
#define SOCK_REL_DGRAM 106
#define SOCK_UNREL_DGRAM SOCK_DGRAM
#define SOCK_REL_ISOCH_DSTREAM 201
#define SOCK_UNREL_ISOCH_DSTREAM 202
#define SOCK_UNREL_ISOCH_STREAM 203

/*
 * Option flags per-socket.
 */
#define SO_DEBUG 0x0001 /* turn on debugging info recording */
#define SO_ACCEPTCONN 0x0002 /* socket has had listen() */
#define SO_REUSEADDR 0x0004 /* allow local address reuse */
#define SO_KEEPALIVE 0x0008 /* keep connections alive */
#define SO_DONTROUTE 0x0010 /* just use interface addresses */
#define SO_BROADCAST 0x0020 /* permit sending of broadcast msgs */
#define SO_USELOOPBACK 0x0040 /* bypass hardware when possible */
#define SO_LINGER 0x0080 /* linger on close if data present */
#define SO_OOBINLINE 0x0100 /* leave received OOB data in line */

#define SO_DONTLINGER (int)(~SO_LINGER)

/*
 * Additional options.
 */
#define SO_SNDBUF 0x1001 /* send buffer size */
#define SO_RCVBUF 0x1002 /* receive buffer size */
#define SO_SNDLOWAT 0x1003 /* send low-water mark */
#define SO_RCVLOWAT 0x1004 /* receive low-water mark */
#define SO_SNDTIMEO 0x1005 /* send timeout */
#define SO_RCVTIMEO 0x1006 /* receive timeout */
#define SO_ERROR 0x1007 /* get error status and clear */
#define SO_TYPE 0x1008 /* get socket type */

/*
 * Winsock extension -- options
 */
#define SO_FLOWSPEC 0x2001 /* flow spec for sockets */
#define SO_GROUP_FLOWSPEC 0x2002 /* flow spec for socket groups */
#define SO_GROUP_ID 0x2003 /* sharing the same physical connection */
#define SO_GROUP_PRIORITY 0x2004 /* the relative priority with a group */
#define SO_MAX_DG_SIZE 0x2005 /* maximum datagram size */
#define PVD_CALL_ID 0x3001 /* an opaque Winsock call ID */
#define PVD_CONFIG 0x3002 /* configuration info for service provider */
#define TAPI_DEVICE_ID 0x3003 /* a TAPI line device ID */

/*
 * TCP options.
 */
#define TCP_NODELAY 0x0001

/*
 * Address families.
 */

109

#define AF_UNSPEC 0 /* unspecified */
#define AF_UNIX 1 /* local to host (pipes, portals) */
#define AF_INET 2 /* internetwork: UDP, TCP, etc. */
#define AF_IMPLINK 3 /* arpanet imp addresses */
#define AF_PUP 4 /* pup protocols: e.g. BSP */
#define AF_CHAOS 5 /* mit CHAOS protocols */
#define AF_NS 6 /* XEROX NS protocols */
#define AF_ISO 7 /* ISO protocols */
#define AF_OSI AF_ISO /* OSI is ISO */
#define AF_ECMA 8 /* european computer manufacturers */
#define AF_DATAKIT 9 /* datakit protocols */
#define AF_CCITT 10 /* CCITT protocols, X.25 etc */
#define AF_SNA 11 /* IBM SNA */
#define AF_DECnet 12 /* DECnet */
#define AF_DLI 13 /* Direct data link interface */
#define AF_LAT 14 /* LAT */
#define AF_HYLINK 15 /* NSC Hyperchannel */
#define AF_APPLETALK 16 /* AppleTalk */
#define AF_NETBIOS 17 /* NetBios-style addresses */
/*
 * Address families -- Winsock extensions.
 */
#define AF_IPX 18 /* IPX/SPX addresses */
#define AF_POTS_IT 19 /* POTS addresses for Intel Transport */
#define AF_ISDNQMUX_IT 20 /* ISDN addresses for Intel Transport */
#define AF_INET_SPE 21 /* Internet (SPE version) */
#define AF_IPX_SPE 22 /* IPX/SPX (SPE version) */
#define AF_NETBIOS_SPE 23 /* NetBios (SPE version) */

#define AF_MAX 24

/*
 * Structure used by kernel to store most
 * addresses.
 */
struct sockaddr {
 u_short sa_family; /* address family */
 char sa_data[14]; /* up to 14 bytes of direct address */
};

/*
 * Structure used by kernel to pass protocol
 * information in raw sockets.
 */
struct sockproto {
 u_short sp_family; /* address family */
 u_short sp_protocol; /* protocol */
};

/*
 * Protocol families, same as address families for now.
 */
#define PF_UNSPEC AF_UNSPEC
#define PF_UNIX AF_UNIX
#define PF_INET AF_INET
#define PF_IMPLINK AF_IMPLINK
#define PF_PUP AF_PUP
#define PF_CHAOS AF_CHAOS
#define PF_NS AF_NS
#define PF_ISO AF_ISO
#define PF_OSI AF_OSI
#define PF_ECMA AF_ECMA
#define PF_DATAKIT AF_DATAKIT
#define PF_CCITT AF_CCITT
#define PF_SNA AF_SNA
#define PF_DECnet AF_DECnet
#define PF_DLI AF_DLI
#define PF_LAT AF_LAT
#define PF_HYLINK AF_HYLINK
#define PF_APPLETALK AF_APPLETALK
/*
 * Protocol families -- Winsock extension
 */
#define PF_IPX AF_IPX
#define PF_POTS_IT AF_POTS_IT
#define PF_ISDNQMUX_IT AF_ISDNQMUX_IT

110

#define PF_INET_SPE AF_INET_SPE
#define PF_IPX_SPE AF_IPX_SPE
#define PF_NETBIOS_SPE AF_NETBIOS_SPE

#define PF_MAX AF_MAX

/*
 * Structure used for manipulating linger option.
 */
struct linger {
 u_short l_onoff; /* option on/off */
 u_short l_linger; /* linger time */
};

/*
 * Level number for (get/set)sockopt() to apply to socket itself.
 */
#define SOL_SOCKET 0xffff /* options for socket level */

/*
 * Winsock extension -- level number for (get/set)socketopt() to apply to service provider
 * level.
 */
#define SOL_PROVIDER IPPROTO_TCP /* options for service provider level */

/*
 * Maximum queue length specifiable by listen.
 */
#define SOMAXCONN 5

#define MSG_OOB 0x1 /* process out-of-band data */
#define MSG_PEEK 0x2 /* peek at incoming message */
#define MSG_DONTROUTE 0x4 /* send without using routing tables */
#define MSG_INTERRUPT 0x8 /* interrupt-time send or recv */

#define MSG_MAXIOVLEN 0x10

/*
 * Define constant based on rfc883, used by gethostbyxxxx() calls.
 */
#define MAXGETHOSTSTRUCT 1024

/*
 * Winsock extension -- WSABUF and QOS struct
 */
typedef struct _WSABUF {

int len; /* the length of the buffer */
char FAR * buf; /* the pointer to the buffer */

} WSABUF, FAR * LPWSABUF;

typedef enum _GUARANTEE {
GuaranteedService,
BestEffortService

} GUARANTEE;

typedef struct _flowparams {
int64 AverageBandwidth; /* in bytes/sec */
int64 PeakBandwidth; /* in bytes/sec */
int64 BurstLength; /* in microseconds */
int64 Latency; /* in microseconds */
int64 DelayVariation; /* in microseconds */
GUARANTEE LevelOfGuarantee; /* guaranteed or best effort */
int32 CostOfCall /* reserved for future; must be zero */
int32 ProviderId; /* provider identifier */
int32 SizePSP; /* length of provider specific parameters */
UCHAR ProviderSpecificParams[1]; /* provider specific parameters */

} FLOWPARAMS;

typedef struct _QOS {
FLOWPARAMS ForwardFP; /* caller (initiator) to callee */
FLOWPARAMS BackwardFP; /* callee to caller */

} QOS, FAR * LPQOS;

/*
 * Winsock extension -- WSANETWORKEVENT
 */

111

typedef struct _WSANETWORKEVENT {
BOOL Fired;
int ErrorCode;

} WSANETWORKEVENT, FAR * LPWSANETWORKEVENT;

/*
 * Winsock extension -- manifest constants for the return value of the condition function
 */
#define CF_ACCEPT 0x0000
#define CF_REJECT 0x0001
#define CF_DEFER 0x0002

/*
 * Winsock extension -- manifest constants for shutdown()
 */
#define SD_RECEIVE 0x00
#define SD_SEND 0x01
#define SD_BOTH 0x02

/*
 * Winsock extension -- data type and manifest constants for socket groups
 */
typedef unsigned int GROUP;

#define SG_UNCONSTRAINED_GROUP 0x01
#define SG_CONSTRAINED_GROUP 0x02

/*
 * Define flags to be used with the WSPSelect() call.
 */
#define FD_READ 0x01L
#define FD_WRITE 0x02L
#define FD_OOB 0x04L
#define FD_ACCEPT 0x08L
#define FD_CONNECT 0x10L
#define FD_CLOSE 0x20L
/*
 * Winsock extension -- new flags for WSPSelect()
 */
#define FD_QOS 0x40L
#define FD_GROUP_QOS 0x80L

/*
 * All Winsock error constants are biased by WSABASEERR from
 * the "normal"
 */
#define WSABASEERR 10000
/*
 * Winsock definitions of regular Microsoft C error constants
 */
#define WSAEINTR (WSABASEERR+4)
#define WSAEBADF (WSABASEERR+9)
#define WSAEACCES (WSABASEERR+13)
#define WSAEFAULT (WSABASEERR+14)
#define WSAEINVAL (WSABASEERR+22)
#define WSAEMFILE (WSABASEERR+24)

/*
 * Winsock definitions of regular Berkeley error constants
 */
#define WSAEWOULDBLOCK (WSABASEERR+35)
#define WSAEINPROGRESS (WSABASEERR+36)
#define WSAEALREADY (WSABASEERR+37)
#define WSAENOTSOCK (WSABASEERR+38)
#define WSAEDESTADDRREQ (WSABASEERR+39)
#define WSAEMSGSIZE (WSABASEERR+40)
#define WSAEPROTOTYPE (WSABASEERR+41)
#define WSAENOPROTOOPT (WSABASEERR+42)
#define WSAEPROTONOSUPPORT (WSABASEERR+43)
#define WSAESOCKTNOSUPPORT (WSABASEERR+44)
#define WSAEOPNOTSUPP (WSABASEERR+45)
#define WSAEPFNOSUPPORT (WSABASEERR+46)
#define WSAEAFNOSUPPORT (WSABASEERR+47)
#define WSAEADDRINUSE (WSABASEERR+48)
#define WSAEADDRNOTAVAIL (WSABASEERR+49)
#define WSAENETDOWN (WSABASEERR+50)

112

#define WSAENETUNREACH (WSABASEERR+51)
#define WSAENETRESET (WSABASEERR+52)
#define WSAECONNABORTED (WSABASEERR+53)
#define WSAECONNRESET (WSABASEERR+54)
#define WSAENOBUFS (WSABASEERR+55)
#define WSAEISCONN (WSABASEERR+56)
#define WSAENOTCONN (WSABASEERR+57)
#define WSAESHUTDOWN (WSABASEERR+58)
#define WSAETOOMANYREFS (WSABASEERR+59)
#define WSAETIMEDOUT (WSABASEERR+60)
#define WSAECONNREFUSED (WSABASEERR+61)
#define WSAELOOP (WSABASEERR+62)
#define WSAENAMETOOLONG (WSABASEERR+63)
#define WSAEHOSTDOWN (WSABASEERR+64)
#define WSAEHOSTUNREACH (WSABASEERR+65)
#define WSAENOTEMPTY (WSABASEERR+66)
#define WSAEPROCLIM (WSABASEERR+67)
#define WSAEUSERS (WSABASEERR+68)
#define WSAEDQUOT (WSABASEERR+69)
#define WSAESTALE (WSABASEERR+70)
#define WSAEREMOTE (WSABASEERR+71)

/*
 * Extended Winsock error constant definitions
 */
#define WSASYSNOTREADY (WSABASEERR+91)
#define WSAVERNOTSUPPORTED (WSABASEERR+92)
#define WSANOTINITIALISED (WSABASEERR+93)

/*
 * Error return codes from gethostbyname() and gethostbyaddr()
 * (when using the resolver). Note that these errors are
 * retrieved via WSAGetLastError() and must therefore follow
 * the rules for avoiding clashes with error numbers from
 * specific implementations or language run-time systems.
 * For this reason the codes are based at WSABASEERR+1001.
 * Note also that [WSA]NO_ADDRESS is defined only for
 * compatibility purposes.
 */

#define h_errno WSAGetLastError()

/* Authoritative Answer: Host not found */
#define WSAHOST_NOT_FOUND (WSABASEERR+1001)
#define HOST_NOT_FOUND WSAHOST_NOT_FOUND

/* Non-Authoritative: Host not found, or SERVERFAIL */
#define WSATRY_AGAIN (WSABASEERR+1002)
#define TRY_AGAIN WSATRY_AGAIN

/* Non recoverable errors, FORMERR, REFUSED, NOTIMP */
#define WSANO_RECOVERY (WSABASEERR+1003)
#define NO_RECOVERY WSANO_RECOVERY

/* Valid name, no data record of requested type */
#define WSANO_DATA (WSABASEERR+1004)
#define NO_DATA WSANO_DATA

/* no address, look for MX record */
#define WSANO_ADDRESS WSANO_DATA
#define NO_ADDRESS WSANO_ADDRESS

/*
 * Winsock errors redefined as regular Berkeley error constants
 */
#define EWOULDBLOCK WSAEWOULDBLOCK
#define EINPROGRESS WSAEINPROGRESS
#define EALREADY WSAEALREADY
#define ENOTSOCK WSAENOTSOCK
#define EDESTADDRREQ WSAEDESTADDRREQ
#define EMSGSIZE WSAEMSGSIZE
#define EPROTOTYPE WSAEPROTOTYPE
#define ENOPROTOOPT WSAENOPROTOOPT
#define EPROTONOSUPPORT WSAEPROTONOSUPPORT
#define ESOCKTNOSUPPORT WSAESOCKTNOSUPPORT
#define EOPNOTSUPP WSAEOPNOTSUPP

113

#define EPFNOSUPPORT WSAEPFNOSUPPORT
#define EAFNOSUPPORT WSAEAFNOSUPPORT
#define EADDRINUSE WSAEADDRINUSE
#define EADDRNOTAVAIL WSAEADDRNOTAVAIL
#define ENETDOWN WSAENETDOWN
#define ENETUNREACH WSAENETUNREACH
#define ENETRESET WSAENETRESET
#define ECONNABORTED WSAECONNABORTED
#define ECONNRESET WSAECONNRESET
#define ENOBUFS WSAENOBUFS
#define EISCONN WSAEISCONN
#define ENOTCONN WSAENOTCONN
#define ESHUTDOWN WSAESHUTDOWN
#define ETOOMANYREFS WSAETOOMANYREFS
#define ETIMEDOUT WSAETIMEDOUT
#define ECONNREFUSED WSAECONNREFUSED
#define ELOOP WSAELOOP
#define ENAMETOOLONG WSAENAMETOOLONG
#define EHOSTDOWN WSAEHOSTDOWN
#define EHOSTUNREACH WSAEHOSTUNREACH
#define ENOTEMPTY WSAENOTEMPTY
#define EPROCLIM WSAEPROCLIM
#define EUSERS WSAEUSERS
#define EDQUOT WSAEDQUOT
#define ESTALE WSAESTALE
#define EREMOTE WSAEREMOTE

#endif /* _WS2API_ */

/*
 * Winsock SPI socket function prototypes
 */

#ifdef __cplusplus
extern "C" {
#endif

typedef BOOL (WSACALLBACK * LPBLOCKINGPROC)(VOID);

typedef VOID (WSACALLBACK * LPCLEANUPPROC)(int ErrorCode,
 DWORD dwCallbackData);

typedef int (WSACALLBACK * LPCONDITIONPROC)(LPWSABUF lpCallerId,
 LPWSABUF lpCallerData,
 LPWSABUF lpCalleeId,
 LPWSABUF lpCalleeData,
 GROUP FAR * g,
 DWORD dwCallbackData);

typedef VOID (WSACALLBACK LPSELECTPROC)(SOCKET s,
 long lEvent,
 int ErrorCode,
 DWORD dwCallbackData);

typedef VOID (FAR * LPWSAUSERAPC)(DWORD dwContext);

int WSPAPI WSPBind(SOCKET s,
 const struct sockaddr FAR *name,
 int namelen,
 int FAR * lpErrno);

int WSPAPI WSPCloseSocket(SOCKET s,
 int FAR * lpErrno);

int WSPAPI WSPGetPeerName(SOCKET s,
 struct sockaddr FAR *name,
 int FAR * namelen,
 int FAR * lpErrno);

int WSPAPI WSPGetSockName(SOCKET s,
 struct sockaddr FAR *name,
 int FAR * namelen,
 int FAR * lpErrno);

int WSPAPI WSPGetSockOpt(SOCKET s,
 int level,

114

 int optname,
 char FAR * optval,
 int FAR *optlen,
 int FAR * lpErrno);

int WSPAPI WSPIoctlSocket(SOCKET s,
 long cmd,
 u_long FAR *argp,
 int FAR * lpErrno);

int WSPAPI WSPListen(SOCKET s,
 int backlog,
 int FAR * lpErrno);

int WSPAPI WSPSelect(int nfds,
 fd_set FAR *readfds,
 fd_set FAR *writefds,
 fd_set FAR *exceptfds,
 const struct timeval FAR *timeout,
 int FAR * lpErrno);

int WSPAPI WSPSetSockOpt(SOCKET s,
 int level,
 int optname,
 const char FAR * optval,
 int optlen,
 int FAR * lpErrno);

int WSPAPI WSPShutdown(SOCKET s,
 int how,
 int FAR * lpErrno);

/* Microsoft Windows Extension function prototypes */

SOCKET WSPAPI WSPAccept(SOCKET s,
 struct sockaddr FAR *addr,
 int FAR *addrlen,
 LPCONDITIONPROC lpfnCondition,
 DWORD dwCallbackData,
 int FAR * lpErrno);

int WSPAPI WSPAsyncSelect32(SOCKET s,
 HWND hWnd,
 unsigned int wMsg,
 long lEvnet,
 int FAR * lpErrno);

int WSPAPI WSPCallbackSelect16(SOCKET s,
 LPSELECTPROC lpfnCallback,
 DWORD dwCallbackData,
 long lEvent,
 int FAR * lpErrno);

int WSPAPI WSPCancelBlockingCall32(int FAR * lpErrno);

int WSPAPI WSPCleanup(LPCLEANUPPROC lpfnCallback,
 DWORD dwCallbackData,
 int FAR * lpErrno);

int WSPAPI WSPConnect(SOCKET s,
 const struct sockaddr FAR *name,
 int namelen,
 LPWSABUF lpCallerData,
 LPWSABUF lpCalleeData,
 GROUP g,
 LPQOS lpSFlowspec,
 LPQOS lpGFlowspec,
 int FAR * lpErrno);

int WSPAPI WSPEnumNetworkEvents(SOCKET s,
 WSAEVNET hEventObject,
 LPWSANETWORKEVENT lpNetworkEvents,
 LPINT lpiCount,
 int FAR * lpErrno);

int WSPAPI WSPEventSelect(SOCKET s,

115

 WSAEVENT hEventObject,
 long lNetworkEvents,
 int FAR * lpErrno);

BOOL WSPAPI WSPIsBlocking32(VOID);

int WSPAPI WSPRecv(SOCKET s,
 LPVOID lpBuffer,
 DWORD nNumberOfBytesToRecv,
 LPDWORD lpNumberOfBytesRecvd,
 LPINT lpFlags,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine,
 int FAR * lpErrno);

int WSPAPI WSPRecvFrom(SOCKET s,
 LPVOID lpBuffer,
 DWORD nNumberOfBytesToRecv,
 LPDWORD lpNumberOfBytesRecvd,
 LPINT lpFlags,
 LPVOID lpFrom,
 LPINT lpFromlen,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine,
 int FAR * lpErrno);

int WSPAPI WSPSend(SOCKET s,
 LPVOID lpBuffer,
 DWORD nNumberOfBytesToSend,
 LPDWORD lpNumberOfBytesSent,
 int nFlags,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine,
 int FAR * lpErrno);

int WSPAPI WSPSendTo(SOCKET s,
 LPVOID lpBuffer,
 DWORD nNumberOfBytesToSend,
 LPDWORD lpNumberOfBytesSent,
 int nFlags,
 LPVOID lpTo,
 int nTolen,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine,
 int FAR * lpErrno);

LPBLOCKINGPROC WSPAPI WSPSetBlockingHook32(LPBLOCKINGPROC lpBlockFunc,
 int FAR * lpErrno);

SOCKET WSPAPI WSPSocket(int af,
 int type,
 int protocol,
 DWORD dwProviderId,
 int nFlags,
 int FAR * lpErrno);

int WSPAPI WSPStartup(WORD wVersionRequired,
 LPWSADATA lpWSAData);

int WSPAPI WSPUnhookBlockingHook32(int FAR * lpErrno);

/* Upcalls from service providers to the Winsock DLL */

SOCKETWSPAPI WPUCreateSocketHandle(DWORD dwProviderId,
 LPVOID lpContext,
 int FAR * lpErrno);

int WSPAPI WPUCloseSocketHandle(SOCKET s,
 int FAR * lpErrno);

int WSPAPI WPUQuerySocketHandleContext(SOCKET s,
 LPVOID FAR * lpContext,
 int FAR * lpErrno);

int WSPAPI WPUSetSocketHandleContext(SOCKET s,
 LPVOID lpContext,

116

 int FAR * lpErrno);

int WSPAPI WPUQueueUserAPC32(DWORD dwThreadId,
 LPWSAUSERAPC lpfnUserApc,
 DWORD dwContext,
 int FAR * lpErrno);

DWORD WSPAPI WPUGetCurrentThreadId32(VOID);

#ifdef __cplusplus
}
#endif

#ifndef _WS2API_

/* Microsoft Windows Extended data types */
typedef struct sockaddr SOCKADDR;
typedef struct sockaddr *PSOCKADDR;
typedef struct sockaddr FAR *LPSOCKADDR;

typedef struct sockaddr_in SOCKADDR_IN;
typedef struct sockaddr_in *PSOCKADDR_IN;
typedef struct sockaddr_in FAR *LPSOCKADDR_IN;

typedef struct linger LINGER;
typedef struct linger *PLINGER;
typedef struct linger FAR *LPLINGER;

typedef struct in_addr IN_ADDR;
typedef struct in_addr *PIN_ADDR;
typedef struct in_addr FAR *LPIN_ADDR;

typedef struct fd_set FD_SET;
typedef struct fd_set *PFD_SET;
typedef struct fd_set FAR *LPFD_SET;

typedef struct hostent HOSTENT;
typedef struct hostent *PHOSTENT;
typedef struct hostent FAR *LPHOSTENT;

typedef struct servent SERVENT;
typedef struct servent *PSERVENT;
typedef struct servent FAR *LPSERVENT;

typedef struct protoent PROTOENT;
typedef struct protoent *PPROTOENT;
typedef struct protoent FAR *LPPROTOENT;

typedef struct timeval TIMEVAL;
typedef struct timeval *PTIMEVAL;
typedef struct timeval FAR *LPTIMEVAL;

/*
 * Windows message parameter composition and decomposition
 * macros.
 *
 * WSAMAKEASYNCREPLY is intended for use by Winsock
 * when constructing the response to a WSAAsyncGetXByY() routine.
 */
#define WSAMAKEASYNCREPLY(buflen,error) MAKELONG(buflen,error)
/*
 * WSAMAKESELECTREPLY is intended for use by Winsock
 * when constructing the response to WSAAsyncSelect().
 */
#define WSAMAKESELECTREPLY(event,error) MAKELONG(event,error)
/*
 * WSAGETASYNCBUFLEN is intended for use by the Winsock application
 * to extract the buffer length from the lParam in the response
 * to a WSAGetXByY().
 */
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)
/*
 * WSAGETASYNCERROR is intended for use by the Winsock application
 * to extract the error code from the lParam in the response
 * to a WSAGetXByY().
 */

117

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
/*
 * WSAGETSELECTEVENT is intended for use by the Winsock application
 * to extract the event code from the lParam in the response
 * to a WSAAsyncSelect().
 */
#define WSAGETSELECTEVENT(lParam) LOWORD(lParam)
/*
 * WSAGETSELECTERROR is intended for use by the Winsock application
 * to extract the error code from the lParam in the response
 * to a WSAAsyncSelect().
 */
#define WSAGETSELECTERROR(lParam) HIWORD(lParam)

#endif /* _WS2API_ */

#endif /* _WS2SPI_ */

118

Appendix B. Notes for Winsock Service Providers

B.1 Introduction

A Winsock service provider must implement ALL of the applicable functionality described in the Winsock

SPI documentation.

Certain Winsock SPIs documented above have special notes for Winsock service provider implementors. A

Winsock service provider should pay special attention to conforming to the Winsock SPI as documented.

The Special Notes are provided for assistance and clarification.

B.2 Winsock SPI Run Time Components

The run time component provided by each Winsock supplier is:

Component Description

Installation Program The Winsock service provider installation program

Service Provider DLL The Winsock service provider implementation DLL

B.3 Error Codes

In order to avoid conflict between various compiler environments Winsock service providers MUST return

the error codes listed in the SPI specification, using the manifest constants beginning with "WSA". The

Berkeley-compatible error code definitions are provided solely for compatibility purposes for applications

which are being ported from other platforms.

119

Appendix C. Outstanding Issues

1. Does the 32-bit Windows Sockets 2 implementation live in WSOCK32.DLL or

WSOCK232.DLL?

2. Do the 16- and 32-bit providers use the same header file (ws2spi.h)?

3. Should SPI functions that take socket descriptors also take a context value? For providers that use

“real” system handles, this could always be NULL.

4. How does a DLL-based protocol support graceful socket close if an app immediately exits after

calling closesocket()? The provider & protocol DLLs will be detached from the process (whose

address space will go away entirely), yet socket state needs to “linger” for the graceful close.

5. Does the Winsock DLL close all sockets before calling WSPCleanup(), or is WSPCleanup()

responsible for closing all open sockets?

